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ABSTRACT

The energy allocation strategy is one of themost popular techniques
in fuzzing to improve code coverage and vulnerability discovery.
The core intuition is that fuzzers should allocate more computa-
tional energy to the seed files that have high efficiency to trigger
unique paths and crashes after mutation. Existing solutions usually
define several properties, e.g., the execution speed, the file size, and
the number of the triggered edges in the control flow graph, to serve
as the key measurements in their allocation logics to estimate the
potential of a seed. The efficiency of a property is usually assumed
to be the same across different programs. However, we find that
this assumption is not always valid. As a result, the state-of-the-art
energy allocation solutions with static energy allocation logics are
hard to achieve desirable performance on different programs.

To address the above problem, we propose a novel program-
sensitive solution, named SLIME, to enable adaptive energy allo-
cation on the seed files with various properties for each program.
Specifically, SLIME first designs multiple property-aware queues,
with each queue containing the seed files with a specific prop-
erty. Second, to improve the return of investment, SLIME leverages
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a customized Upper Confidence Bound Variance-aware (UCB-V)
algorithm to statistically select a property queue with the most
estimated reward, i.e., finding the most new unique execution paths
and crashes. Finally, SLIME mutates the seed files in the selected
property queue to perform property-adaptive fuzzing on a program.
We evaluate SLIME against the state-of-the-art open source fuzzers
AFL,MOpt, AFL++, AFL++HIER, EcoFuzz, and TortoiseFuzz on 9
real-world programs. The results demonstrate that SLIME discovers
3.53×, 0.24×, 0.62×, 1.54×, 0.88×, and 3.81× more unique vulnera-
bilities compared to the above fuzzers, respectively. We will open
source the prototype of SLIME to facilitate future fuzzing research.
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1 INTRODUCTION

Mutation-based fuzzing is one of the most popular solutions to
automatically discover vulnerabilities in a program. The general
process of a mutation-based fuzzer is to mutate seeds with random
operators, and then use the generated test cases to test a program
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for triggering abnormal behaviors. However, the fuzzing perfor-
mance is usually limited in practice under the above straightforward
idea. Then, following the intuition that testing more paths is likely
to discover more unique crashes/vulnerabilities, coverage-based
fuzzing is proposed with the goal of improving path exploration in
the fuzzing process [11, 32, 33, 57]. Specifically, a coverage-based
fuzzer first stores the seeds, each of which triggers a unique execu-
tion path of the target program, in a queue. Then, it achieves better
fuzzing performance by allocating mutation energy to these seeds.
Recently, many researches point out that the seeds of a coverage-
based fuzzer have different efficiency in generating interesting test
cases [30, 49, 50], i.e., the ones that can trigger new unique execu-
tion paths or crashes on a target program. Therefore, a carefully
designed energy allocation strategy is necessary for effectively gen-
erating more interesting test cases. Towards this, multiple energy
allocation strategies are proposed, including mutating more times
on the seeds with some specific properties [2, 32], focusing on ex-
ploring deeper paths [40], mutating more times on the seeds with
higher transition probabilities, i.e., the seeds that are more likely to
trigger different execution paths after mutation [8, 56], etc.

However, we observe that the seeds with better performance
on the defined properties do not always have high efficiency to
generate interesting test cases given a program in practice. Thus,
existing energy allocation solutions cannot achieve the optimal
efficiency on different programs due to the static energy allocation
logics. To further demonstrate our observation, we conduct a case
study (see the details in Section 2.4), which leads to the following
main observation: the seeds with the same property have different
efficiency on different programs. Thus, the seeds with the defined
key properties cannot achieve the best fuzzing efficiency across
different programs, i.e., existing static energy allocation solutions
may yield poor performance in practice. Therefore, a program-
sensitive energy allocation solution, which adaptively allocates
appropriate energy to the seeds with different properties for each
target program, is demanded to improve the fuzzing performance.

Towards this, we have the following main challenges: 1) how to
define properties that can effectively classify seed files and contain
the real-time efficient ones for each target program? 2) how to
design a framework that adaptively finds seeds with each property
and can periodically update them if necessary? and 3) how to esti-
mate the potential of finding new unique paths and crashes for the
seeds with a property and allocate mutation energy to them?

To overcome the above challenges, we present SLIME to achieve
program-sensitive energy allocation for different programs. To be
specific, we propose to define properties from three perspectives
related to seed diversity, and identify 17 example properties cor-
respondingly. Then, we design an iterative framework for SLIME
to periodically update seeds with each property. In each iteration,
SLIME first mutates seeds in the original queue to evaluate and
decide whether this seed has the above properties. Second, SLIME
constructs a new property queue to store the seeds for each specific
property. Thus, a seed with multiple properties will be stored in
multiple property queues. Third, SLIME leverages a customized
Upper Confidence Bound Variance-aware (UCB-V) algorithm to
estimate the potential reward of each property queue, based on the
property queue’s unique path and crash discovery performance so
far. Finally, SLIME statistically selects the property queues guided

by the estimated reward and mutates the seeds in these queues to
achieve program-sensitive energy allocation.

As a general energy allocation solution, SLIME can be applied
to most existing mutation-based fuzzers to enhance their energy
allocation logics. In this paper, we implement SLIME based onMOpt
[32], which is one of the most popular fuzzers with a static energy
allocation component. We compare the fuzzing performance of
SLIME with the state-of-the-art fuzzers, including AFL [2],MOpt,
AFL++ [17], AFL++HIER [50], EcoFuzz [56], and TortoiseFuzz [52],
on 9 representative real-world programs. In total, SLIME finds 3.53×,
0.24×, 0.62×, 1.54×, 0.88×, and 3.81× more unique vulnerabilities
reported by AddressSanitizer than AFL,MOpt, AFL++, AFL++HIER,
EcoFuzz, and TortoiseFuzz, respectively.

In summary, we make the following contributions.
•We conduct a preliminary case study to demonstrate that the

seeds, which have a better performance on the key properties de-
fined by the current energy allocation strategies, do not always
have high efficiency given different programs in practice.

• Motivated by our case study, we propose a program-sensitive
solution SLIME to adaptively allocate energy to the seeds with
different properties, guided by the potential reward estimated by a
customized Upper Confidence Bound Variance-aware (UCB-V) al-
gorithm on a program. In particular, we design a flexible framework
to implement property queue construction and property-adaptive
energy allocation, and propose a new data structure for the original
queue to better store property values for each seed.

•We evaluate SLIME compared with 6 state-of-the-art fuzzers on
9 real-world programs. The results show that SLIME performs better
than others in terms of vulnerability discovery and edge coverage.
We also use the standardized benchmark FuzzBench to show the
significant coverage performance of SLIME. Furthermore, we utilize
the published Common Vulnerabilities and Exposures (CVE) IDs as
ground truth, and demonstrate the effectiveness and efficiency of
SLIME to find serious vulnerabilities.We experimentally analyze the
contribution of eachmain part of SLIME to the fuzzing performance.

• We open source SLIME at https://github.com/diewufeihong/
SLIME to facilitate future fuzzing research.

2 BACKGROUND AND MOTIVATION

2.1 Mutation-based Fuzzing

The core idea of mutation-based fuzzing is to trigger the abnormal
behaviors of a target program with randomly mutated test cases.
Specifically, a general workflow is as follows. A fuzzer 1) constructs
a seed queue to store seeds; 2) mutates a seed in the seed queue to
generate new test cases and test the program; 3) stores the test cases
locally that trigger abnormal behaviors of the program; and 4) goes
to step 2) to iteratively perform the fuzzing process. However, the
performance of a mutation-based fuzzer is restricted by the simple
execution workflow. To improve fuzzing efficiency, existing works
focus on improving the coverage of a mutation-based fuzzer, since a
higher coveragemeans triggeringmore unique paths, which implies
a higher likelihood to find more unique crashes/vulnerabilities.

2.2 Coverage-based Fuzzing

The focus of coverage-based fuzzing is to store a unique seed for
each different execution path. In addition to the above steps of a
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mutation-based fuzzer, a coverage-based fuzzer maintains a seed
queue to store the unique seeds with different path coverage. To
trigger new execution paths around the unique path triggered by
a seed, the fuzzer generates new test cases based on this seed. For
each execution to test a program, if the generated test case triggers
a new unique execution path, the fuzzer stores the test case into
the queue as a new seed. In this paper, we mainly focus on edge
coverage to identify unique paths, which is widely implemented
in the state-of-the-art coverage-based fuzzers and balances the
trade-off between the identification accuracy and computational
overhead.

In order to deduplicate execution paths with edge coverage, an
edge coverage guided fuzzer constructs the following framework.
1) The fuzzer instruments a target program and assigns a random
value to each basic block in the Control Flow Graph (CFG). After
instrumentation, if the program executes an edge between two
basic blocks, the program calculates an edge hash according to the
blocks’ assigned values. Thus, a unique edge in CFG is represented
by a unique edge hash as calculated above. Then, the program
utilizes each byte in a bitmap named trace_bits, whose byte index
is edge hash, to count the execution times for each unique edge.
For each triggered edge in an execution path, the instrumented
program adds 1 on the corresponding byte of trace_bits; 2) To
measure the edge coverage of an execution path triggered by a test
case, the fuzzer leverages the shared memory to read trace_bits
from the instrumented program. Then, to use different bits to mark
different ranges of execution times in a byte of trace_bits, the
fuzzer initializes trace_bits to 0, and turns one bit in one byte
to 1 according to the execution times of each triggered edge; 3)
Therefore, when using a test case to test a program, the fuzzer
obtains the corresponding trace_bits. A new bit in trace_bits
becoming 1 indicates that a new unique execution path is triggered.

Based on the edge coverage statistics provided by trace_bits,
coverage-based fuzzers can store the seeds, which trigger unique
execution paths, into the queue with low computational overhead.
To further improve the fuzzing performance, as one of the research
directions in coverage-based fuzzing, energy allocation strategies
are proposed to spend more computational energy on the seeds
that seem more likely to generate interesting test cases.

2.3 Energy Allocation Strategies

The core idea of energy allocation is to spend more energy (i.e.,
execution time and computing power) on mutating the seed that
is more efficient to trigger unique paths and crashes after muta-
tion. Specifically, most state-of-the-art works 1) propose their key
properties to estimate the potential of seeds, and 2) design the
corresponding algorithms based on the key properties to allocate
different energy to each seed. For instance, AFL allocates more mu-
tation energy to the seeds that have faster execution speed, trigger
more bits on their trace_bits, and are discovered at a later time
[2]. Based on AFL, AFLFast models the coverage exploration as the
state space transition in a Markov chain. Then, AFLFast allocates
more mutation energy to the seeds that trigger low-frequency state
spaces and have higher transition probabilities, i.e., the probability
that a seed triggers different execution paths after mutation [8]. Re-
cently, EcoFuzz leverages the adversarial multi-armed bandit model

to prioritize and allocate more energy to the seeds that have higher
transition probabilities with fewer executions [56].

In summary, existing energy allocation solutions allocate more
energy to the seeds that have better performance on their key prop-
erties, respectively. However, the seeds with these key properties do
not always have high efficiency to trigger unique paths and crashes
given different programs in practice, and thus the defined key prop-
erties would not be suitable to estimate the seeds’ potential on
different target programs. Different from the existing energy alloca-
tion solutions, the main idea of SLIME is to figure out the real-time
efficient properties on each program, and adaptively allocate more
mutation energy to the seeds with these high efficiency properties.

2.4 Motivation

To illustrate that the efficiency of seeds with the same property is
not always consistent across different target programs, we conduct
a case study to show the fuzzing efficiency of seeds with different
properties. The investigated properties are defined as follows.

Definition 1 fast. A seed with the fast property means that it
has a short execution time when testing a program. We sort the seeds
in the queue according to the execution time from short to long, and
select the front ranked files as the ones with the fast property.

Definition 2 slow. The seeds with the slow property are the front
ranked files which are sorted by the execution time from long to short.

Definition 3 long. The seeds with the long property mean that
they have larger file sizes than other files in the queue.

Definition 4 short. Contrary to the long property, the size of
the seed with the short property is smaller than others.

Definition 5 depth. The depth of a new seed is the depth of
its parent seed plus 1. For instance, the depth of a seed in the initial
seed set is 0. Then, the depth of a new seed generated from this is 1.
Therefore, a seed with the depth property means that it is generated
based on more rounds of mutations than other seed files.

Definition 6 cmp_const_num. The seeds with the cmp_const_
num property mean that there are more solved branch constraints in
their execution paths.

Definition 7 untouch_num. The seeds with the untouch_num
property mean that they have more untouched neighbor basic blocks.

Definition 8 bit_num. If a seed has the bit_num property, it
passes through more unique edges during execution and triggers more
bits in its trace_bits compared to other seeds.

Definition 9 loop_num. If a seed triggers more program loops in
the execution process, it is more likely to have the loop_num property.

With the same experiment settings as in Section 4.1, we employ
MOpt to fuzz gdk, objdump and pdfimages, three widely-used
programs in fuzzing [5, 29, 32], for 48 hours, each of which is
repeated 4 times. When finishing the fuzzing process, we 1) sort the
seeds according to the definition of each aforementioned property;
2) select the top 40% files as the ones with the specific property;
3) count the total number of unique paths and crashes which are
triggered by the selected seeds after mutation; 4) count the total
execution times of these selected files; and 5) calculate the fuzzing
efficiency of a property as the total number of unique paths and
crashes divided by the total execution times. The results are shown
in Fig. 1, and we have the following observations.
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Figure 1: The unique path and crash discovery efficiency of

the seeds with different properties in 4 trials. Each color rep-

resents one trial on a program. X-axis: The different proper-

ties. Y-axis: The efficiency of a specific property.

The seedswith different properties have different efficien-

cy on a program. For instance, the seeds with the slow, bit_num
and cmp_const_num properties have higher fuzzing efficiency than
the files with other properties on gdk. Moreover, the seeds with the
same property have stable efficiency in different trials on a program.
This demonstrates the validity of property-based energy allocation
solutions in fuzzing. However, the implicit assumption in existing
energy allocation solutions that the seeds with the same property
also achieve high efficiency across different programs is improper.

The seedswith the sameproperty have different efficiency

on different programs. As shown in Fig. 1, the seeds with the
untouch_num property have high efficiency on pdfimages, but
have low efficiency on gdk. The seeds with the short property
have acceptable efficiency on objdump, while they perform poorly
on pdfimages. In addition, the seeds with the fast and depth
properties perform worse than others on pdfimages, which is con-
trary to the state-of-the-art energy allocation solutions. Therefore,
a program-sensitive energy allocation solution is demanded to im-
prove the fuzzing performance given different programs in practice.

In summary, we find that 1) the seeds with different properties
perform differently on a program; and 2) the seeds with the same
property perform differently on different programs. However, exist-
ing energy allocation solutions consider that the seeds having the
defined key properties are always efficient to find unique paths and
crashes, while ignoring the correlation between different properties
and different programs. This may lead to poor performance in prac-
tice. Thus, it is necessary to develop a program-sensitive energy
allocation solution, which adaptively allocates energy according to
the fuzzing efficiency of the properties for each target program.

3 DESIGN OF SLIME

3.1 Framework of SLIME

To solve the problems in existing energy allocation strategies and
achieve the program-sensitive energy allocation, SLIME is designed
to adaptively allocate mutation energy to the seeds with different
properties according to each property’s efficiency given a target
program. Specifically, SLIME first needs to mutate each seed in
the seed queue and record its performance on different properties.
Second, SLIME clusters the seeds with the same property, and then
allocates appropriate energy to mutate these seeds according to the
property’s fuzzing efficiency. To periodically update seeds’ property
and recluster them, the above process is performed iteratively.

To achieve the above design, we construct the framework of
SLIME as shown in Fig. 2. Specifically, to cluster the seeds with the
same property, we design a property queue to store seeds for each
property. Correspondingly, we design the original queue to store
all the seeds discovered in the fuzzing process.

To test a target program and record a newly discovered interest-
ing test case’s performance on different properties, SLIME leverages
the Fuzzing Engine to mutate a seed and detect whether triggering
new execution paths and crashes. Then, if SLIME finds a new inter-
esting test case which triggers a new execution path, it utilizes the
Property Record to 1) store the test case into the original queue
as a new seed and 2) record the seed’s performance on each de-
fined property. In particular, we present 17 kinds of properties from
3 perspectives related to seed diversity (see Section 3.2). Noting
that more properties can be easily included in SLIME. For instance,
SLIME can leverage vulnerable locations reported by static analysis
tools as a property, and allocates more energy to the seeds trigger-
ing these vulnerable locations in order to improve vulnerability
discovery.

To adaptively update seeds’ property and periodically recon-
struct each property queue, we design 3 iterative stages in SLIME:
the Exploration Stage, the Update Stage, and the Exploitation
Stage. The details of these stages are as follows.
The Exploration Stage: As shown in Fig. 2, SLIME enters the
Exploration Stage at the beginning of fuzzing, in which SLIME
mutates all the seeds in the original queue. For each new interest-
ing test case that triggers a new unique path, SLIME stores it in
the original queue as a new seed, and records its property values.
To save computational overhead and maximize SLIME’s fuzzing
efficiency at the beginning of the fuzzing process, we define two
ending conditions of the Exploration Stage: 1) for the first time,
if the unique path and crash discovery efficiency of SLIME drops
to a preset threshold, SLIME finishes the Exploration Stage and
enters the Update Stage; and 2) after the first time, SLIME mutates
all the seeds in the original queue for a fixed number of cycles in
the Exploration Stage, and then enters the Update Stage.

Different from the design of existing fuzzers [2, 32, 42, 56] that
only store and mutate the first test case triggering a unique execu-
tion path, SLIME leverages the Seed Replacement to replace the
old seed in the original queue with a higher quality one for each
unique path. To achieve this, we first design a new data structure of
the original queue to implement the Seed Replacement in SLIME,
whose details are shown in Section 3.3. Then, after identifying most
efficient properties in the Exploitation Stage, SLIME can quantify
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Figure 2: The framework of SLIME.

the estimated quality for each test case based on its performance
on these efficient properties. Finally, in the Exploration Stage, if
a seed has been fuzzed and has never discovered any new unique
path or crash, it can be replaced by a test case that triggers the same
path and has a higher estimated quality. The details of the Seed
Replacement are shown in Section 3.4.
The Update Stage: In the Update Stage, SLIME first leverages the
Property Update for Seeds to update property values of each
seed before constructing property queues, whose reasons are as
follows. Although SLIME records the value of each property for
a new discovered seed with the Property Record, its recorded
property values can be changed during the fuzzing process. For
instance, the value of the untouch_num property will be changed
because some untouched neighboring basic blocks are explored as
the testing goes on. Therefore, SLIME checks all the seeds in the
original queue to update their property values in this step.

Second, in the Property Queue Update, SLIME traverses all the
seeds in the original queue and reconstructs all the property queues.
Each property queue is sorted from high to low by the performance
of seeds on this property. Specifically, when checking the value of a
specific property for a seed, if 1) the corresponding property queue
does not reach the maximum length or 2) the current seed has better
performance on this property according to the definition than the
last one in this property queue, SLIME adds the seed to this property
queue. Then, if the property queue exceeds the maximum length
after adding a new seed, SLIME removes the last seed with the
worst performance in this property queue. Thus, after traversing
all the seeds once, SLIME achieves to construct all the property
queues satisfying their definitions, respectively.
The Exploitation Stage: After reconstructing all the property
queues, SLIME enters the Exploitation Stage to perform energy
allocation. To be specific, SLIME 1) leverages a property-adaptive
energy allocation algorithm to estimate the potential of discovering
interesting test cases of each property queue, and 2) statistically
selects a property queue according to the estimated potential and
mutates the seeds in the property queue. More details are intro-
duced in Section 3.5. The queue selection process repeats a fixed
number of times in the Exploitation Stage, then SLIME enters
the Exploration stage and starts the next iteration.

3.2 The Properties of SLIME

To find the real-time key properties contributing to the discovery of
interesting test cases given a target program, SLIME needs to define
enough properties, each of which can effectively classify seeds. To

achieve this, we analyze the methods of existing coverage-based
fuzzers [17, 19, 32, 56] to distinguish seeds, and realize that the prop-
erties related to seed diversity can be grouped into 3 perspectives:
1) the basic properties related to seeds, 2) the properties of basic
blocks triggered by seeds, and 3) the properties of trace_bits trig-
gered by seeds. Thus, in our design, we define 17 kinds of properties
based on the 3 perspectives, whose details are as follows.

1) The basic properties include fast, slow, long, short, and
depth as shown in Section 2.4, as well as the following 3 properties.

Definition 10 interesting. The seeds with the interesting
property are sorted from high to low according to the number of
interesting test cases generated from these seeds.

Definition 11 edge_change_eff. If a seed changes its execution
path after mutation, its edge change number is increased by 1. We
calculate the edge change efficiency (the edge change number divided
by the number of executions) for each seed, and then select the front
ranked seeds as the ones with the edge_change_eff property.

Definition 12 rare_file. If a seed has been mutated fewer times
than others, it can be regarded as a rare file during the fuzzing process
and will be added to the rare_file property queue.

2) The properties of basic blocks triggered by seeds include
cmp_const_num and untouch_num as aforementioned, as well as
the following 5 properties.

Definition 13 mem_num. The seeds in the mem_num property queue
are sorted from high to low according to the total number of the mem-
ory access operations reported by LLVM instruction, e.g., mayReadFro-
mMemory() and mayWriteToMemory(), in their triggered basic blocks.

Definition 14 func_num. The seeds in the func_num property
queue are sorted from high to low according to the number of the high-
risk functions, which are most relevant to vulnerabilities summarized
from the CVE dataset [3, 52], in their triggered basic blocks.

Definition 15 global_num. The seeds in the global_num prop-
erty queue are sorted from high to low according to the total number
of the global variables in their triggered basic blocks.

Definition 16 global_assign_num. Similarly, there are more
global variables and assignment operators in the basic blocks of the
seeds with the global_assign_num property.

Definition 17 crash_num. Recent researches point out that, if
a program crashes in a basic block, then the program has a higher
probability of triggering a crash in its neighboring basic blocks [31].
Thus, if there occurs a crash in a basic block, we mark this basic block
and its neighboring blocks as high-risk blocks. Then, the seeds with
the crash_num property are sorted from high to low according to the
number of the marked basic blocks in their execution paths.

3) The properties of trace_bits triggered by seeds include
bit_num and loop_num as defined in Section 2.4.

In implementation, we write an LLVM pass to record the corre-
sponding values for the properties of basic blocks during compila-
tion. Then, SLIME can record all the property values for a seed by
reading properties related to the seed, statically reading the above
values for its triggered basic blocks, and analyzing its trace_bits.

3.3 The Queue Structure of SLIME

In order to 1) store the values of the above 17 properties for each
seed, and 2) implement a suitable data structure for the Seed Repla-
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plemented in SLIME.

cement in order to replace seeds with higher quality ones, we design
a new data structure for the original queue in SLIME.

Instead of storing seeds in a linked list like existing fuzzers [2,
8, 40, 56], we use a hash table to construct the original queue
as shown in Fig. 3, whose workflow to add a newly discovered
seed is as follows. First, SLIME calculates checksum by hashing the
seed’s trace_bits. Second, SLIME utilizes a hash function to hash
checksum in order to locate the index on buckets, each of which can
be empty or may contain more than one entry in order to handle
a hash collision. Then, to add a new seed into the original queue,
SLIME inserts a new checksum node, which stores the values for
the properties of basic blocks and trace_bits triggered by this
seed as shown in Fig. 3, at the end of the located bucket. Finally,
SLIME creates a seed file node under the checksum node to store
the seed’s normal data (e.g., the file name) and the values for its
basic properties.

To locate an entry which triggers the same trace_bits for a
given test case, the workflow is close to the above. After finding
the target bucket with the hash function, SLIME traverses all the
entries in the bucket in order to find the checksum node containing
the same checksum. Then, the found node and its seed file node
store the data of the seed triggering the same trace_bits.

Based on the new data structure of the original queue, SLIME
achieves to fast create and locate nodes for seeds. Moreover, the new
data structure provides the infrastructure for the Seed Replacement.
By locating the entry with the same checksum in the bucket and
only modifying the data stored in the seed file node, SLIME
achieves to 1) fast find the node which stores the seed triggering
the same execution path, and 2) save the computational overhead
of the replacement process since two seeds have the same triggered
basic blocks and trace_bits.

As for the data structure of property queues, SLIME constructs
a linked list for each property queue in the Update Stage. In the
Property Queue Update, the linked list stores the entries for each
property following the procedures as described in Section 3.1. To
mutate the seeds in a selected property queue in the Exploitation
Stage, SLIME traverses the corresponding linked list and reads the
seed file nodes’ data to perform the mutation.

3.4 Seed Replacement in SLIME

Most state-of-the-art coverage-based fuzzers store the first test
case triggering an unique execution path as the seed, and then
generate test cases based on this seed. However, the stored seed
may not be the optimal one to find new unique paths and crashes. If
the stored seed is not suitable, existing fuzzers need to spend more
computational overhead generating test cases to trigger a new path.

To solve the above problem and improve the fuzzing efficiency
with a better seed, we propose the Seed Replacement for SLIME,
which solves the following challenges: 1) how tomeasure the quality
for a seed, and 2) when to replace an old seed with a new and higher
quality test case.

To overcome the first challenge, in the Seed Replacement,
SLIME measures a seed’s quality based on its performance on most
efficient properties, whose workflow is as follows.

First, SLIME identifies which properties are most efficient by find-
ing the most frequent properties on the high-efficiency seeds, which
implies the reasons for finding more unique paths and crashes. To
be specific, SLIME 1) records the properties of the high-efficiency
seeds which have discovered the most unique paths and crashes
after mutation; 2) counts the occurrences for each property; and
3) selects the top frequent properties as the efficient properties.
In implementation, we refer to the design of the number of key
properties of existing energy allocation algorithms as shown in
Section 4.3, and empirically define the top 3 frequent properties as
the efficient properties. For instance, the efficient properties can be
slow, bit_num and cmp_const_num if they appear most frequently
on the high-efficiency seeds.

Second, SLIME calculates a temporary score on each efficient
property for a seed, which is normalized to the range of (0, 1]. To
do this, SLIME records the property value of the top ranked seed
in the original queue, according to the definition of each property.
Then, SLIME measures the performance of a seed on a property by
comparing its value with the recorded top value. Specifically, the
temporary score is defined as the recorded top value divided by a
seed’s property value for the properties, whose queues are in the
ascending order, e.g., the fast property and the short property.
Oppositely, the temporary score is defined as a seed’s property
value divided by the top value for the other properties, whose
queues are in the descending order, e.g., the slow property. As an
example, if the slow property is found to be one of the efficient
properties, SLIME considers that a seed with a longer execution
time can find more unique paths and crashes. Then, leveraging the
value of the longest execution time as the baseline, SLIMEmeasures
the performance of each seed on the slow property. The longer a
seed’s execution time is, the higher its temporary score is.

Third, SLIME sums the temporary scores on the top 3 efficient
properties as the estimated quality of a seed. For example, if the
efficient properties are slow, bit_num and cmp_const_num, SLIME
calculates a temporary score on each of them and uses the sum of
the 3 temporary scores as the estimated quality of a seed.

With the above three steps, SLIME achieves to measure seed
quality by quantifying the performance of a seed on the top 3
efficient properties. In implementation, for every 3 cycles of stage
iterations as shown in Fig. 2, SLIME reidentifies the top 3 efficient
properties and remeasures the quality of each seed in the original
queue, in order to balance the trade-off between computational
overhead and functional requirement.

As for the second challenge, SLIME replaces the seed, which has
been fuzzed and has never discovered any new path or crash, with
a new test case in the Exploration as shown in Section 3.1, whose
workflow is as follows. After the first time to enter the Exploration
Stage, SLIME has identified the top 3 efficient properties, based on
which SLIME can quantify the estimated quality of a test case. Thus,
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for a test case which triggers a known execution path, SLIME fast
locates the seed triggering the same path in the original queue with
our new data structure. If the located seed 1) has been added into
the original queue for more than 3 cycles of the stage iterations, 2)
has been mutated, 3) has never discovered any new unique path
or crash, and 4) has a lower estimated quality, SLIME will replace
the seed with the test case by modifying the data in the seed file
node in our new data structure.

3.5 Property-adaptive Energy Allocation

In this subsection, we mainly introduce the property-adaptive en-
ergy allocation algorithm to statistically select property queues.

To achieve the energy allocation on the seeds with different
properties, in the Exploitation Stage, SLIME performs the queue
selection process a fixed number of times, and mutates the seeds
in each selected property queue. Since SLIME is supposed to select
the property queues containing the efficient seeds more times and
improve the fuzzing performance, the queue selection problem
can be regarded as a multi-armed bandits problem. In other words,
the goal of the property-adaptive energy allocation algorithm is
to estimate the potential of discovering interesting test cases for
each property queue (i.e., the reward), and then statistically select
a property queue based on the reward. Meanwhile, to prevent from
1) slowing down the execution speed of a fuzzer and 2) significantly
reducing its fuzzing performance, the energy allocation algorithm
is supposed to have low computational overhead.

To solve the aforementioned problem, we design the property-
adaptive energy allocation algorithm based on the Upper Confi-
dence Bound Variance-aware (UCB-V) algorithm [6], which is one
of the most popular algorithms to solve a multi-armed bandits prob-
lem. Specifically, the UCB-V algorithm used in SLIME estimates the
confidence interval for the number of newly discovered interest-
ing test cases if selecting a property queue in the Exploitation
Stage. Then, the UCB-V algorithm regards the upper confidence
bound of the estimated interval as the reward, which is the basis
for property queue selection. Moreover, the more times a property
queue is selected, the narrower and more accurate its upper confi-
dence bound about interesting test case discovery is estimated by
the UCB-V algorithm. Therefore, the UCB-V algorithm adaptively
optimizes the estimated rewards for property queues during the
fuzzing process, improving the fuzzing performance. The relevant
symbols of the UCB-V algorithm are defined as follows.

Definition 18 G. 𝐺 [𝑖] is the number of newly discovered inter-
esting test cases, which trigger new unique paths and crashes, when
selecting the 𝑖th property queue once and mutating its seeds in the
Exploitation Stage.

Definition 19 R. 𝑅 [𝑖] is the sum of𝐺 [𝑖] for the 𝑖th property queue.
Definition 20 R_Sq. 𝑅_𝑆𝑞 [𝑖] is the sum of squares of𝐺 [𝑖] for the

𝑖th property queue.
Definition 21 N. 𝑁 [𝑖] is the number of times the 𝑖th property

queue was selected in the Exploitation Stage, and 𝑁_𝑡𝑜𝑡𝑎𝑙 is the
number of selections for all the queues.

Definition 22 Variance.𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 [𝑖] is the variance estimation
for the 𝑖th property queue, which improves the algorithm’s conver-
gence rate and helps find the efficient property queues faster.

Definition 23 UCB_V. 𝑈𝐶𝐵_𝑉 [𝑖] is the estimated upper confi-
dence bound of the 𝑖th property queue.

𝑅 [𝑖 ]+ = 𝐺 [𝑖 ] . (1)

𝑅_𝑆𝑞 [𝑖 ]+ = 𝐺 [𝑖 ] ×𝐺 [𝑖 ] . (2)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 [𝑖 ] = 𝑅_𝑆𝑞 [𝑖 ]
𝑁 [𝑖 ] − 𝑅 [𝑖 ] × 𝑅 [𝑖 ]

𝑁 [𝑖 ] × 𝑁 [𝑖 ] . (3)

𝑈𝐶𝐵_𝑉 [𝑖 ] = 𝑅 [𝑖 ]
𝑁 [𝑖 ] +

√
2 ×𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 [𝑖 ] × log(𝑁 _𝑡𝑜𝑡𝑎𝑙)

𝑁 [𝑖 ] + 3 × log(𝑁 _𝑡𝑜𝑡𝑎𝑙)
𝑁 [𝑖 ] .

(4)

The workflow of the UCB-V algorithm used in SLIME is as fol-
lows. In the Exploitation Stage, each time to select a property
queue to mutate, SLIME will perform Formula 4 to calculate the up-
per confidence bound for each property queue. If there is a property
queue that has never been selected (i.e., 𝑁 == 0), SLIME will select
this property queue to perform the following fuzzing process; Oth-
erwise, SLIME selects the property queue with the largest𝑈𝐶𝐵_𝑉
(which is one of the most common usages of UCB algorithms in
practice). After selecting a property queue, SLIME performs the mu-
tation process with the seeds in this property queue, and counts the
number of newly discovered interesting test cases (i.e., 𝐺). When
all the seeds in the property queue have been mutated, a queue
selection process is complete. Then, SLIME updates 𝑅 and 𝑅_𝑆𝑞 for
the selected property queue following Formula 1 and 2. After that,
SLIME performs the next queue selection process; or SLIME fin-
ishes the Exploitation Stage and enters the Exploration Stage
if SLIME performs the queue selection process enough times.

4 EVALUATION

4.1 Experiment Setup

In the evaluation, we aim to answer the following questions:
RQ1 - How effective is the fuzzing performance of SLIME?
RQ2 - What is the contribution of each main part of SLIME to its
fuzzing performance?
Compared fuzzers. We compare SLIME with the open source
fuzzers AFL [2],MOpt [32], AFL++ [17], AFL++HIER [50], EcoFuzz
[56], and TortoiseFuzz [52] for the following reasons. First, AFL is
a widely used baseline in the state-of-the-art papers [12, 13, 53, 55].
Second,MOpt is a newly developed fuzzer that focuses on allocating
different energy to different mutation operators. AFL++ is a supe-
rior fuzzer enhanced by various designs of state-of-the-art fuzzers.
Third, AFL++HIER, EcoFuzz and TortoiseFuzz are 3 state-of-the-
art energy allocation solutions, which can show the performance
difference between different energy allocation strategies.
Real-world target programs and initial seed sets. We follow
the guideline of UniFuzz [29] to evaluate the above fuzzers with 9
widely-used programs as shown in Table 1, which are randomly
selected from the targets of UniFuzz and state-of-the-art fuzzing
papers [18, 19, 32, 55, 56]. The initial seed set for each target pro-
gram is provided by the open-source data sets of UniFuzz, which 1)
collects seeds with the corresponding input format from the Inter-
net; 2) excludes the seeds that do not satisfy fuzzers’ requirements;
and 3) randomly selects 100 seeds as the initial seed set.
Experiment settings. We conduct the evaluation of each fuzzer
on a target program under the same experiment settings: a docker
container configured with 1 CPU core of 2.40GHz E5-2680 V4 and
the 64-bit Ubuntu 16.04 LTS. To reduce the impact of randomness
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Table 1: The open-source target programs of the benchmark.

Program Version Input format Test instruction

cflow 1.6 txt @@

ffmpeg 4.0.1 mp4 -y -i @@ -c:v mpeg4 -c:a copy -f mp4
/dev/null

gdk gdk-pixbuf 2.31.1 jpg @@ /dev/null
imginfo jasper 2.0.12 jpg -f @@
jhead 3.00 jpg @@

mp3gain 1.5.2-r2 mp3 @@
objdump binutils 2.28 binary -S @@
pdfimages xpdf 4.00 pdf @@ /dev/null
tiffsplit libtiff 3.9.7 tiff @@

Table 2: The unique vulnerability discovery of SLIME with

the different property queue lengths.

Programs Length ratio of property queues to the original queue

1/10 4/10 8/10 10/10

ffmpeg 1 2 1 1
jhead 4 5 4 4

objdump 15 16 15 15
tiffsplit 12 13 11 11

total 32 36 31 31

and improve the reproducibility of the results, 20 trials are repeated
in each evaluation, each of which lasts 120 hours. In total, we spend
several months running the evaluations on 8 servers, each of which
has two E5-2680 V4 CPUs and 256 GB memory.
Evaluation metrics. To measure the performance of each fuzzer
with unified metrics. First, we evaluate the vulnerability discovery
performance of each fuzzer, according to the number of the unique
vulnerabilities reported by AddressSanitizer (ASan) [1] on target
programs. The reasons for using the number of unique vulnerabili-
ties rather than unique crashes are as follows. 1) Not all the crashes
discovered by a fuzzer trigger unique vulnerabilities. Thus, the
number of unique crashes found by each fuzzer cannot accurately
reflect its vulnerability discovery performance; 2) On the contrary,
the number of the unique vulnerabilities directly shows the vul-
nerability discovery performance of each fuzzer. Since ASan can
report different types of vulnerabilities on a program and is often
used in the state-of-the-art papers [18, 29, 35, 52], we leverage the
number of unique vulnerabilities reported by ASan to measure the
fuzzer’s vulnerability discovery performance. In this paper, we ex-
tract the top three functions in the stack trace reported by ASan to
deduplicate the vulnerabilities following the guideline of UniFuzz.

To compare the coverage performance of different fuzzers, the
second metric is the average edge coverage reported by AFL-cmin
[2] in 20 trials, which is a widely used metric in [19, 42, 43, 56].
Length selection for property queues of SLIME. To choose a
suitable property queue length for SLIME, we analyze the influence
of the length of the property queues on vulnerability discovery.
To do this, we conduct experiments to evaluate SLIME with dif-
ferent property queue lengths on ffmpeg, jhead, objdump, and
tiffsplit. We select 1/10, 4/10, 8/10, and 10/10 of the length of the
original queue as the length of the property queues in SLIME. In
the Exploitation Stage, to eliminate the influence brought by the
UCB-V algorithm, SLIME with each length ratio traverses and mu-
tates the seeds in all the property queues, rather than statistically
selects the property queue according to the UCB-V algorithm. Each
trial lasts 96 hours and is repeated 4 times to reduce randomness.
The number of the total unique vulnerabilities after deduplication
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Figure 4: The boxplot generated by the number of unique

vulnerabilities in 20 trials, where ‘— -’ represents themedian.

Y-axis: the number of unique vulnerabilities discovered in

each trial.

Table 3: The number of total unique vulnerabilities after

deduplication in 20 trials found by each fuzzer.

AFL MOpt AFL++ AFL++HIER EcoFuzz TortoiseFuzz SLIME

cflow 0 2 2 1 2 1 4

ffmpeg 0 2 2 0 0 0 3

gdk 23 31 26 23 26 20 32

imginfo 0 0 0 0 0 0 1

jhead 5 6 5 0 5 5 10

mp3gain 8 17 16 18 16 5 23

objdump 5 30 28 5 14 5 39

pdfimages 1 75 49 44 48 0 87

tiffsplit 9 24 15 0 12 12 32

total 51 187 143 91 123 48 231

in 4 trials are shown in Table 2, and we have the following observa-
tion. When using 4/10 of the length of the original queue as

the length of the property queues, SLIME performs the best

on the vulnerability discovery. For instance, SLIME with the
4/10 length ratio finds 1 more unique vulnerability than others on
ffmpeg, jhead and objdump. In total, SLIMEwith the 4/10 length ra-
tio finds 4, 5 and 5 more unique vulnerabilities than SLIMEwith the
1/10, 8/10 and 10/10 length ratio on all the programs, respectively.
We analyze the reasons for the results in Table 2 as follows.

The ratio of the length of property queues to the length of the
original queue represents the proportion of the seeds which will be
mutated in the Exploitation Stage. Thus, SLIME with the 10/10
length ratio actually executes the same fuzzing process in the
Exploitation Stage as in the Exploration Stage, since SLIME
stores all the seeds of the original queue into each property queue
and mutates all the seeds in both stages. Furthermore, SLIME con-
structs the property queues that have the opposite properties. There
can be the same seeds stored in both the opposite property queues
if the length ratio is larger than 5/10. For instance, when the length
ratio is 8/10, there are several seeds with the medium execution
speed stored in both the fast and slow property queues. These
seeds in the opposite property queues can obtain more energy allo-
cation. On the contrary, the small length ratio of SLIME may lead
to unbalanced energy allocation, in other words, SLIME spends
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Table 4: The number and types of new unique vulnerabilities which are only found by SLIME and are missed by other fuzzers.

SEGV on unknown address, READ memory access heap-buffer-overflow stack-overflow memory leaks allocation-size-too-big total
ffmpeg 1 0 0 0 0 1
gdk 0 3 0 0 0 3
jhead 0 4 0 0 0 4

objdump 7 1 0 0 0 8
pdfimages 1 10 4 0 0 15
tiffsplit 0 3 0 5 2 10
total 9 21 4 5 2 41

Table 5: The properties and values of each original seed of

SLIME that triggers a new unique vulnerability on objdump
after mutation. A value in bold font means that the original

seed has the corresponding property.

seed_id long (file size) global_num global_assign_num func_num

No. 1 32,391.00 660.00 108.00 47.00
No. 2 10,432.00 583.00 101.00 70.00
No. 3 13,488.00 564.00 91.00 78.00

No. 4 32,452.00 720.00 121.00 47.00

mean among all
the seeds 54,116.90 508.08 84.18 64.78

median among
all the seeds 13,952.00 577.50 94.00 57.50

the most computational energy mutating a small proportion of
the seeds in the Exploitation Stage. The small proportion of the
seeds can be mutated too many times to find any new unique path
and crash in the Exploitation Stage after a long fuzzing duration.
Therefore, either the small or the large length ratio is not suitable
as the length of the property queues in SLIME.

Empirically, we use the 4/10 length ratio in the implementation of
SLIME, as it achieves the best vulnerability discovery performance.

4.2 Vulnerability & Coverage Discovery (RQ1)

In this subsection, we analyze the vulnerability discovery and edge
coverage performance of each fuzzer on 9 target programs. The
boxplot generated by the number of unique vulnerabilities found
by each fuzzer in 20 trials is shown in Fig. 4, and the number of
total unique vulnerabilities after deduplication in all 20 trials on
each target is shown in Table 3.

• As shown in Fig. 4, SLIME achieves the best vulnerability
discovery on most programs according to the upper quartile and
median of the boxplots. For instance, SLIME is more likely to find
more vulnerabilities than others in each trial on objdump. On jhead,
the median of SLIME is significantly larger than other fuzzers’
median. The results demonstrate the significant performance of
SLIME on vulnerability discovery in one trial of a program.

• Table 3 presents that SLIME finds the most total unique vulner-
abilities in 20 trials on all the programs. For instance, SLIME finds 8,
17 and 20 more vulnerabilities than MOpt, AFL++ and EcoFuzz on
tiffsplit, respectively. In total, SLIME discovers 44 more unique
vulnerabilities than the second best fuzzer on 9 programs. SLIME
discovers 3.53× more unique vulnerabilities than the baseline AFL.

•We further analyze the unique vulnerabilities found by SLIME,
and find out the ones that 1) cannot be found by other fuzzers and
2) are not published on the CVE website [3]. The results are shown
in Table 4, from which we can realize that SLIME finds significantly
more new unique vulnerabilities than others. Then, we analyze
the PoCs of these new vulnerabilities. To be specific, we trace the

Table 6: The published CVE IDs found by each fuzzer.

CVE ID AFL MOpt AFL++ AFL++HIER EcoFuzz TortoiseFuzz SLIME

cflow
CVE-2020-23856
CVE-2019-16166
CVE-2019-16165

imginfo CVE-2017-6851

jhead
CVE-2020-6624

CVE-2019-1010302
CVE-2019-19035

mp3gain
CVE-2017-14410
CVE-2017-14409
CVE-2017-14407

objdump

CVE-2021-3487
CVE-2019-17450
CVE-2019-9072

CVE-2018-1000876
CVE-2018-7568
CVE-2017-16831
CVE-2017-16826
CVE-2017-15024
CVE-2017-14938
CVE-2017-8396

pdfimages

CVE-2020-24999
CVE-2019-13291
CVE-2019-13281
CVE-2019-10022
CVE-2018-18458
CVE-2018-18455
CVE-2018-16368
CVE-2018-7453

total 6 21 19 8 15 5 25

original seeds in the original queue which generate these PoCs
after mutation. Then, we perform the property queue construction
of SLIME to classify seeds from the original queue to property
queues, and record their properties. As described above, we analyze
several PoCs along with their original seeds for the new unique
vulnerabilities of objdump found by SLIME, and find that the PoCs
are generated by the seeds which will be assigned less mutation
energy in traditional energy allocation algorithms. The properties
and values of 4 original seeds are shown in Table 5. If a seed has
a specific property, its corresponding value will be in bold font.
For instance, when fuzzing objdump, SLIME mutates No. 4 seed
having the long, global_num and global_assign_num properties,
and then triggers a new unique vulnerability that is missed by all
other fuzzers. Since this seed is classified into long, global_num
and global_assign_num property queues, it will be assigned more
energy in the Exploitation Stage of SLIME. On the contrary, due
to the long property, this seed will be assigned minor mutation
energy in the state-of-the-art fuzzers like AFL, MOpt, and AFL++.

To further verify the validity of the discovered vulnerabilities for
each fuzzer, we record the published Common Vulnerabilities and
Exposures (CVE) IDs found by each fuzzer on target programs. To
do this, we 1) collect the stack traces of the CVE IDs and their Proof-
of-Concept (PoC) exploits from [3] for each program; 2) leverage
the PoC exploits to reproduce the stack traces of the CVE IDs on our



ISSTA ’22, July 18–22, 2022, Virtual, South Korea C. Lyu, H. Liang, S. Ji, X. Zhang, B. Zhao, M. Han, Y. Li, Z. Wang, W. Wang, and R. Beyah

harfbuzz-1.3.2 (24h, 10 trials/fuzzer)

SLIME MOPT AFL AFL++

8,550

8,500

8,450

8,400

8,350

8,300

8,250

8,200

jsoncpp_jsoncpp_fuzzer (24h, 10 trials/fuzzer)

SLIME AFL++ MOPT AFL

639.0

638.8

638.6

638.4

638.2

638.0

lcms-2017-03-21 (24h, 10 trials/fuzzer)

AFL SLIME MOPT AFL++

3,400

3,200

3,000

2,800

2,600

vorbis-2017-12-11 (24h, 10 trials/fuzzer)

SLIME MOPTAFL++ AFL

2,177.5

2,175.0

2,172.5

2,170.0

2,167.5

2,165.0

2,162.5

2,160.0

Figure 5: The boxplot of region coverage found in 10 trials on FuzzBench, where ‘△’ and ‘—’ represent the mean and median,

respectively. The fuzzer with the highest median coverage is on the left. Y-axis: the region coverage found in each trial.

Table 7: The number of average edge coverage in 20 trials

found by each fuzzer.

AFL MOpt AFL++ AFL++HIER EcoFuzz TortoiseFuzz SLIME

cflow 1,760.50 1,784.05 1,785.65 1,804.55 1,784.30 1,762.25 1,819.75

ffmpeg 18,046.25 31,343.45 43,838.75 33,317.40 21,293.55 17,002.20 32,825.75
gdk 1,458.40 1,985.00 1,577.95 1,505.40 1,236.30 1,335.75 2,038.85

imginfo 2,192.15 3,258.90 2,743.35 1,179.55 2,815.85 1,716.05 3,500.25

jhead 283.00 283.00 283.00 283.00 283.00 283.00 283.00
mp3gain 1,203.40 1,297.45 1,282.85 1,278.05 1,281.25 1,191.80 1,300.40

objdump 5,568.45 7,687.20 8,071.95 5,785.40 7,009.00 5,576.85 7,954.95
pdfimages 10,275.55 11,497.80 11,245.80 10,909.60 10,626.35 10,239.35 11,932.70

tiffsplit 3,036.35 3,291.75 3,290.40 2,289.60 2,964.20 2,988.90 3,308.50

instrumented target program; 3) compare the top three stack traces
between the CVE IDs and vulnerabilities found by each fuzzer;
and 4) record the triggered CVE IDs found by each fuzzer. In our
evaluation, no fuzzer triggers any published CVE ID on ffmpeg, gdk,
and tiffsplit. For ease of demonstration, we show the triggered
CVE IDs for the remaining target programs in Table 6, from which
we can have the following conclusion.

• Table 6 shows that SLIME achieves the best performance on
CVE discovery, which contains 5 unique CVE IDs missed by other
fuzzers. Specifically, SLIME finds 25 CVE IDs on all the 9 programs,
and finds 4 more CVE IDs than the second best fuzzer. SLIME also
finds 6 and 10 more CVE IDs than AFL++ and EcoFuzz on all the
target programs. These discovered CVE IDs seriously threaten the
services and users. For instance, CVE-2017-6851 allows remote
attackers to cause a denial of service via a crafted image and affects
the normal function of imginfo. Thus, the significant performance
of discovering published CVE IDs demonstrates the effectiveness
and efficiency of SLIME on serious vulnerability discovery.

As for the coverage, the number of average edge coverage in 20
trials achieved by each fuzzer is shown in Table 7.

As for the coverage, the number of average edge coverage in
20 trials achieved by each fuzzer is shown in Table 7, from which
we can have the following conclusion. SLIME performs the best

on the edge coverage on 6 of all the 9 programs. While all
the tested fuzzers have the same edge coverage on jhead, SLIME
achieves the top 3 edge coverage on the other 2 programs. The
results in Table 7 also show the significant edge coverage improve-
ment of SLIME compared to AFL, EcoFuzz and TortoiseFuzz on
most programs.

To further evaluate fuzzers’ coverage performance with the ac-
knowledged benchmark, we utilize FuzzBench, one of the most
famous standardized benchmarks, to evaluate AFL, MOpt, AFL++,
and SLIME on 4 programs, including harfbuzz, jsoncpp, lcms, and

vorbis. Each evaluation lasts 24 hours and is repeated 10 times
to reduce the randomness. The results are shown in Fig. 5, from
which we have the following conclusion. SLIME performs the

best on region coverage when using the standardized bench-

mark FuzzBench to measure the performance. For instance,
the median of SLIME is the highest on harfbuzz, jsoncpp, and
vorbis. SLIME performs better than MOpt and AFL++ on lcms.
The mean of SLIME is higher than other fuzzers on harfbuzz and
vorbis. The results demonstrate the significant coverage perfor-
mance of SLIME on a standardized benchmark.

RQ1: SLIME is effective and efficient in coverage improvement
and vulnerability discovery. SLIME significantly outperforms
the state-of-the-art fuzzers in terms of vulnerabilities detection.
As for coverage, SLIME achieves more average edge coverage
on most programs, and performs the best on FuzzBench.

4.3 Contributions of SLIME’s Main Parts (RQ2)

To evaluate the contribution of the property-adaptive energy alloca-
tion algorithm as shown in Section 3.5, we construct the following
one version of SLIMEwith a different queue selection algorithm, i.e.,
SLIME_rand, which randomly selects each property queue with the
same probability in the Exploitation Stage. We evaluate the vul-
nerability discovery performance of SLIME_rand on gdk, objdump
and tiffsplit. Each trial lasts 120 hours and is repeated 20 times,
whose experiment settings are the same as in Section 4.1. Then,
we compare the vulnerability discovery of SLIME_rand with the
results of MOpt, AFL++ and SLIME in Section 4.2. Based on the
above experiment setup, we can measure the contribution of the
property-adaptive energy allocation algorithm to the vulnerability
discovery from the results of SLIME_rand and SLIME, and mea-
sure the contribution of the property queue construction from the
results of MOpt and SLIME_rand. Table 8 shows the number of
total unique vulnerabilities after deduplication in 20 trials and the
average number of unique vulnerabilities in each trial found by
each fuzzer, from which we have the following conclusions.

• The property queue construction cannot significantly improve
the vulnerability discovery performance without the property-
adaptive energy allocation algorithm. For instance,MOpt finds 1
more unique vulnerability than SLIME_rand on gdk and tiffsplit
after deduplication in 20 trials, respectively. However, after imple-
menting the property-adaptive energy allocation algorithm, SLIME
find more unique vulnerabilities than others on most programs.
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Table 8: The number of unique vulnerabilities found by

MOpt, AFL++, SLIME_rand, and SLIME.

MOpt AFL++ SLIME_rand SLIME

# of total unique
vulnerabilities in 20 trials

gdk 31 26 30 32

objdump 30 28 30 39

tiffsplit 24 15 23 32

Total 85 69 83 103

Average # of unique
vulnerabilities in each trial

gdk 17.15 14.00 18.45 20.03

objdump 7.65 5.90 10.10 12.10

tiffsplit 8.40 4.00 7.70 15.75

Total 33.20 23.90 36.25 47.88

Table 9: The average edge coverage increment of SLIME_no

and SLIME when using an extensive data set, which has

found the most edge coverage, as the initial seed set.

Programs Original edge results SLIME_no SLIME Increase a
ffmpeg 32,825.75 +3,813.35 +4,531.15 +18.82%
imginfo 3,500.25 +207.15 +328.75 +58.70%
pdfimages 11,932.70 +36.60 +50.30 +37.43%
tiffsplit 3,308.50 +27.30 +29.60 +8.42%

aIncrease is calculated by the results of SLIME divided by SLIME_no’s.

• Our customized UCB-V algorithm significantly improves the
vulnerability discovery performance of SLIME. SLIME discovers
significantly more unique vulnerabilities than other fuzzers on
all the 3 programs. For instance, SLIME finds 9 and 8 more total
unique vulnerabilities than SLIME_rand and MOpt on tiffsplit,
respectively. The average number of unique vulnerabilities found
by SLIME is also significantly larger than other fuzzers in each trial
of a program.

To evaluate the contribution of the Seed Replacement in SLIME
to the fuzzing performance, we construct SLIME_no without the
Seed Replacement, and evaluate SLIME_no and SLIME with the
following experiment setup. We evaluate the edge coverage perfor-
mance of SLIME_no and SLIME on ffmpeg, imginfo, pdfimages,
and tiffsplit. In order to increase difficulty in finding new edge
coverage and show the usage of the Seed Replacement, we use the
coverage results in Section 4.2, which have found the most unique
edges, as the initial seed set of SLIME_no and SLIME for each target
program. Thus, both SLIME_no and SLIME are started with a large
seed set and are conducted 20 trials for each program, respectively.
Each trial lasts 48 hours. Then, we compare the average edge cover-
age increment, i.e., the number of newly discovered edge coverage
on average compared to the initial seed set, of SLIME_no and SLIME
reported by AFL-cmin. The results are shown in Table 9, fromwhich
we have the following conclusion. The Seed Replacement can

improve the edge coverage performance. For instance, the av-
erage edge coverage increment of SLIME is 0.19× and 0.37× larger
than SLIME_no on ffmpeg and pdfimages, respectively. The re-
sults demonstrate the contribution of the Seed Replacement to
the fuzzing performance.

RQ2: The property queue construction cannot improve the
vulnerability discovery performance alone, and our UCB-V al-
gorithm significantly improves SLIME’s vulnerability discovery
performance. The Seed Replacement also contributes to the
fuzzing performance.

5 DISCUSSION AND LIMITATION

Energy allocation between different stages. SLIME mainly fo-
cuses on adaptively assigning mutation energy to the seed files
with different properties in the Exploitation Stage. In addition, it
would be possible to further improve the energy allocation logic be-
tween the Exploration Stage and the Exploitation Stage. There-
fore, how tomake better use of different energy allocation strategies
in the two stages and seek an energy allocation balance is an inter-
esting future work.
Further utilization of the estimated quality. SLIME quantifies
the estimated quality for each seed, which is calculated by its prop-
erty values on the top 3 efficient properties. The estimated quality
is used to decide whether to keep a seed in the original queue as
shown in Section 3.4. In future work, the estimated quality could
be used in other situations, e.g., the mutation order of seeds and
the execution times of one seed in each mutation. How to optimize
the usage of the estimated quality could be a promising topic.

6 RELATEDWORK

6.1 Mutation-based Fuzzing

Various mutation-based fuzzing solutions have been proposed from
different aspects to improve fuzzing performance.

Several studies utilize symbolic execution [15, 25, 26, 43, 59] or
taint tracking [18, 22, 36, 40] to improve fuzzing performance. Yun
et al. proposed a concolic execution engine named QSYM, which
runs hybrid fuzzing with AFL to improve the constraint solving
performance [57]. Profuzzer includes a lightweight mechanism to
discover the relations between input bytes and program behaviors
[55]. Redqeen solves magic bytes and checksum automatically
with input-to-state correspondence [5]. GreyOne adopts a sound
fuzzing-driven taint inference, which takes both taint attributes
and constraint conformance into consideration [18]. Recent works
employ machine learning algorithms to improve fuzzing effective-
ness [14, 21, 39, 41, 61]. Specifically, NEUZZ leverages surrogate
neural network models to locate byte positions that have great
impacts on program behaviors, and demonstrates the potential of
gradient-guided seed generation methods together with the neural
smoothing technique [42].

Plenty of energy allocation solutions have been proposed from
different aspects. AFL assigns more energy to the seeds, which
cover more edge coverage, execute faster, and are discovered later
[2]. Several energy allocation fuzzers allocate more energy to ex-
plore low-frequency paths, untouched branches and unexplored
descendants [8, 19, 56]. Considering more precise coverage, AFL-
Sensitive presents context-sensitive and 𝑛-gram branch coverage
to distinguish potential seeds [49], and Ankou employs an informa-
tive distance-based fitness function [35]. Cerebro allocates energy
to a seed according to the complexity of its execution code and
uncovered close code [30]. AFL++HIER leverages a multi-armed
bandit model to allocate energy on different clusters of seeds with
multi-level coverage metrics [50].

Unlike other state-of-the-art energy allocation strategies, SLIME
adaptively allocates different energy to the seed files with different
properties according to their efficiency on each target program,
rather than allocating energy following the static logic.
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6.2 Generation-based Fuzzing

Generation-based fuzzing mainly focuses on generating test cases
with specific input formats [16, 20, 23, 34, 48]. Traditionally, CSmith
[54], Radamsa [45], LangFuzz [24], and IFuzzer [44] generate test
cases by employing the context-free grammar as the specification.
Meanwhile, CLP utilizes manually-specified generation rules to
express semantic rules [16]. Skyfire learns a probabilistic context-
sensitive grammar to generate test cases for XSLT, XML, JavaScript,
and rendering engines [47]. Nautilus combines grammar-based
input generationwith feedback-directed fuzzing onmultiple targets,
including ChakraCore, PHP, mruby, and Lua [4]. Lee et al. presented
a neural network language model guided fuzzer named Montage to
find JavaScript engine vulnerabilities [27].

6.3 Other Kinds of Fuzzing Tools

Directed fuzzing takes a set of predetermined target positions, and
guides the fuzzing process to trigger the target positions [7, 61].
Specifically, Hawkeye leverages precise control flow information
to achieve better directedness [9]. Some works prefer bug coverage.
For instance, ParmeSan actively guides the fuzzing process towards
triggering the sanitizer checks [37], and SAVIOR solves constraints
for UBSan checks to direct the fuzzing process towards actual bugs
[13]. Other than the general purpose, more kinds of fuzzers are pro-
posed to find specific types of bugs, such as algorithmic complexity
vulnerabilities [38], memory corruption [52], uncontrolled memory
consumption [53], use-after-free [46], and so on. Recently, plenty
of works focus on Internet of Things (IoT) security and propose
their well-designed tools [10, 28, 51, 58, 60].

7 CONCLUSION

In this paper, by conducting a case study, we confirm our obser-
vation that the seed files with different properties have different
efficiency to discover unique paths and crashes on a program, and
the seed files with the same property also have different efficiency
on different programs. Based on this observation, we present a
program-sensitive energy allocation solution SLIME to adaptively
assign the appropriate energy to the seed files with different prop-
erties for a given target program. We demonstrate that SLIME sig-
nificantly outperforms the state-of-the-art fuzzers on vulnerability
discovery and coverage performance. Furthermore, the analysis also
shows that SLIME’s property-adaptive energy allocation algorithm
significantly improves the vulnerability discovery performance,
and the Seed Replacement of SLIME can improve the coverage
performance. With great flexibility, SLIME can serve as a key en-
ergy allocation strategy to improve the vulnerability discovery and
coverage performance of most mutation-based fuzzers.
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