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ABSTRACT

As the core of IoT devices, firmware is undoubtedly vital. Currently,

the development of IoT firmware heavily depends on third-party

components (TPCs), which significantly improves the development

efficiency and reduces the cost. Nevertheless, TPCs are not secure,

and the vulnerabilities in TPCs will turn back influence the security

of IoT firmware. Currently, existing works pay less attention to the

vulnerabilities caused by TPCs, and we still lack a comprehensive

understanding of the security impact of TPC vulnerability against

firmware.

To fill in the knowledge gap, we design and implement Firm-

Sec, which leverages syntactical features and control-flow graph

features to detect the TPCs at version-level in firmware, and then

recognizes the corresponding vulnerabilities. Based on FirmSec, we

present the first large-scale analysis of the usage of TPCs and the

corresponding vulnerabilities in firmware. More specifically, we

perform an analysis on 34, 136 firmware images, including 11, 086

publicly accessible firmware images, and 23, 050 private firmware
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images from TSmart. We successfully detect 584 TPCs and identify

128, 757 vulnerabilities caused by 429 CVEs. Our in-depth analy-

sis reveals the diversity of security issues for different kinds of

firmware from various vendors, and discovers some well-known

vulnerabilities are still deeply rooted in many firmware images. We

also find that the TPCs used in firmware have fallen behind by five

years on average. Besides, we explore the geographical distribution

of vulnerable devices, and confirm the security situation of devices

in several regions, e.g., South Korea and China, is more severe than

in other regions. Further analysis shows 2, 478 commercial firmware

images have potentially violated GPL/AGPL licensing terms.
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1 INTRODUCTION

The Internet of Things (IoT) has become ubiquitous and offers

great convenience to our daily lives [35, 40]. According to a recent

report [20], Gartner forecasts that the number of IoT devices will

triple from 2020 to 2030. Inevitably, the booming of IoT devices also

raises the public’s concern about their security risks [50, 52, 58]

and several real-world attacks further aggravate this panic. For

example, Mirai has compromised millions of IoT devices including

IP cameras, DVRs, and routers, to form a botnet [19, 49, 53] and

launch DDoS attacks against various online services [17, 38].

Firmware is an integrated software package that booted in IoT

devices which serve the essential roles. Nowadays, firmware widely

adopts TPCs, e.g., BusyBox [4] and OpenSSL [14], to accelerate and

simplify the development process. However, the wide usage of TPCs

is a double-edged sword since a significant number of TPCs have

known vulnerabilities that will open up many new attack surfaces

to IoT firmware. For example, the Heartbleed vulnerability [31] in

OpenSSL has greatly affected at least millions of IoT devices. To

make things worse, vendors may reuse a set of the same TPCs in

different kinds of firmware, which accelerates the spread of poten-

tial vulnerabilities. Therefore, it is vital to recognize the vulnerable

TPCs used in firmware.

Although a series of research [21ś24, 27, 28, 33, 34, 48, 54] has

adopted static or dynamic approaches to evaluate firmware security,

they are still limited since they pay less attention to the vulner-

abilities caused by TPCs in firmware, lack the consideration of

non-Linux based firmware, and/or are unscalable on large-scale

firmware security analysis. Specifically, first, they lack the analysis

of N-days vulnerabilities introduced by TPCs, which may result

in more serious problems than unknown vulnerabilities in real-

ity [25]. Second, most of them are limited to analyze the Linux-

based firmware, but short of the analysis of monolithic firmware,

which is widely adopted in new ubiquitous, low-power embedded

systems, e.g., smart homes. Last but not least, their scalability is

a challenge when given large-scale firmware tests. For instance,

several approaches require real IoT devices in analysis or lots of

manual work for configuration, which greatly limits their scalabil-

ity. Therefore, we still lack a comprehensive understanding of the

usage of TPCs in multiple kinds of firmware and the vulnerabilities

introduced by them, with a scalable and practical method.

1.1 Challenges

To obtain a comprehensive overview of the TPCs used in firmware

and their corresponding vulnerabilities, we have the following key

challenges.

Firmware Dataset Construction. To enable our study, the first

challenge is to construct a large-scale and comprehensive firmware

dataset covering different kinds of firmware from various vendors.

Thus we can obtain convincing results of the current security is-

sues of the firmware. Nevertheless, there is no publicly accessible

firmware dataset for research. Besides, more and more vendors

begin to prohibit the public from downloading firmware and adopt

anti-scraping techniques [51] against the hostile web crawler, which

in turn greatly increases the data collection difficulty.

Firmware Processing. There are twomajor challenges in firmware

processing. (1) Extract the contained objects, which have essen-

tial information for TPC detection, from Linux-based firmware.

Though existing tools, e.g., binwalk [36], can be used to unpack

firmware, they have limitations on dealing with the firmware which

has adopted the latest or customized filesystems. (2) Deal with the

monolithic firmware, which is widely used in lower-power embed-

ded systems, e.g., smart homes. Monolithic firmware usually lacks

a traditional operating system or metadata, e.g., RAM/ROM start

address, needed for analysis. Besides, its code, libraries, and data

are highly intermixed. Regarding these challenges, yet, existing

tools, e.g., IDA, cannot deal with the monolithic firmware without

extra configuration.

TPC Detection and Vulnerability Identification. We have two

major challenges in TPC detection and vulnerability identification.

(1) Detect the TPCs at version-level. To accurately identify the cor-

responding vulnerabilities of TPCs used in firmware, we need to

detect them at version-level rather than only at TPC-level since

the vulnerabilities of different versions of TPCs might be different.

Nevertheless, it is hard to distinguish the same TPCs at version-

level since the code difference of different versions might be tiny.

Besides, without source code, we can only obtain limited features

from firmware for TPC identification. Previous works for firmware

analysis [27, 29, 34] cannot meet our requirements since they do not

support detecting the TPCs at version-level in firmware. (2) Con-

struct a TPC database. We need a comprehensive and easily usable

TPC database that indicates the possible TPCs used in firmware

and the vulnerabilities of each version of TPCs. To the best of our

knowledge, there is no previous work has built such a TPC data-

base for IoT firmware. It is a challenge to collect as many TPCs as

possible and map the vulnerabilities to the TPC versions.

1.2 Methodology

In this paper, we dedicate to providing a comprehensive understand-

ing of the usage of TPCs in firmware and the potential security

risks caused by TPCs. Toward this, we develop a scalable and auto-

mated framework FirmSec to conduct a large-scale analysis of IoT

firmware. Our analysis method is as follows.

First, to solve the challenge of constructing a firmware dataset,

we collect firmware images from public sources and private sources,

e.g., official website and private firmware repository. Second, we

customize several plugins for existing tools, e.g., binwalk and IDA, to

address the problem in firmware processing. The customized tools

support unpacking and disassembling both Linux-based firmware

that utilizes popular and uncommon filesystems, and monolithic

firmware. Third, we propose a new detection strategy to identify

the TPCs used in firmware. The main idea behind our strategy is

to leverage two kinds of features, syntactical features, and control-

flow graph features, that are extracted from the TPC and firmware.

We then search the corresponding vulnerabilities based on versions

check [18, 56, 57], which relies on our TPC database. Based on the

results, FirmSec will generate a report for each firmware image

which indicates its potential risks. Moreover, the report will provide

a series of suggestions for fixing the vulnerabilities.

To provide more in-depth insights, we conduct further studies

to explore the security status quo of the IoT ecosystem from four

aspects. First, we evaluate the vulnerability of the firmware of

different kinds and from different vendors. Second, we explore the

geographical difference of the security of IoT devices. Next, we
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explore the outdated TPC problem in firmware. Finally, we analyze

the TPC GPL/AGPL license violations in firmware.

1.3 Contributions

We summarize our main contributions below.

• We construct so far the largest firmware dataset, which in-

cludes 11, 086 publicly accessible firmware images and 23, 050 pri-

vate firmware images. It contains 35 kinds of firmware, with most

of them rarely studied in previous works. To facilitate future re-

search, we will open-source this dataset at https://github.com/BBge/

FirmSecDataset.

• We propose FirmSec, a scalable and automated framework to

analyze the TPCs used in firmware and identify the correspond-

ing vulnerabilities. FirmSec has 91.03% of precision and 92.26% of

recall in identifying the TPCs at version-level in firmware, which

significantly outperforms state-of-the-art works, e.g., Gemini [54],

BAT [37], OSSPolice [30].

•We conduct the first large-scale analysis of the vulnerable TPC

problem in firmware. We identify 584 TPCs and detect 429 CVEs

in 34, 136 firmware images. According to the results, we reveal the

widespread usage of vulnerable and outdated TPCs in IoT firmware.

Moreover, we confirm the geographical difference in the security of

IoT devices where several regions, e.g., South Korea and China, are

in a more severe situation than other regions. Finally, we discover

2, 478 firmware images potentially violate GPL/AGPL licensing

terms, which may lead to lawsuits.

2 DESIGN AND IMPLEMENTATION

FirmSec is designed to automatically identify the TPCs used in

firmware and detect the corresponding vulnerabilities. As shown in

Figure 1, FirmSec mainly contains three components: firmware col-

lection, firmware preprocessing and firmware analysis. The firmware

collectionmodule is mainly designed to collect firmware from differ-

ent sources. Next, the firmware preprocessing module will process

the collected firmware in three steps: 1) filter out the non-firmware

files from the raw dataset; 2) identify the necessary information

of firmware; and 3) unpack and disassemble firmware. Finally, the

firmware analysis module will detect the TPCs at version-level in

firmware according to the syntactical features and control-flow

graph features extracted from the TPC and firmware. The corre-

sponding vulnerabilities will be recognized through versions check

according to our TPC database. The implementation behind each

component is discussed in the following subsections.

2.1 Firmware Collection

The firmware collectionmodule is responsible for collecting firmware

to construct a large-scale raw dataset. To solve the problem of lim-

ited firmware resources, we implement a web crawler to collect

firmware from three sources: 1) Official website; 2) FTP site; 3) Com-

munity. We collect a part of firmware images of several vendors,

e.g., Xiaomi, from the community, including the related forums

and GitHub repositories; 4) Private firmware repository. We ob-

tain the permission to access the private firmware repository of a

world-leading company that mainly focuses on smart homes. In

this paper, we use TSmart 1 to represent this company. TSmart’s

1The anonymized name TSmart represents a world-leading company that mainly
focuses on smart homes.

Figure 1: Architecture of FirmSec. Green submodules require

somemanual work during the initialization of FirmSec, while

other submodules can be automatically executed.

firmware repository contains tens of thousands of firmware images

of smart homes manufactured by hundreds of vendors, e.g., Philips,

and never be studied.

2.2 Firmware Preprocessing

In this part, we mainly preprocess the collected firmware by three

steps: firmware filtration, firmware identification, and firmware

extraction and disassembly.

Firmware Filtration. The first step is to exclude the non-firmware

files from the raw dataset. First, we filter the obvious non-firmware

files, e.g., .txt files, through suffix matching. Second, we adopt Bi-

nary Analysis Next Generation (BANG) [3], which supports rec-

ognizing 136 kinds of files, to get rid of other non-firmware files,

e.g., Android Dex. We apply it to the remaining collected files and

remove the non-firmware files based on the returned file types.

Firmware Identification. The second step is to identify the neces-

sary information of firmware, e.g., operating systems, architectures,

and filesystems, which is crucial for further analysis. We obtain

the missed information of firmware based on two steps. First, we

extract the information from the metadata files, which are crawled

with the firmware. The metadata file describes the firmware, in-

cluding its corresponding device model, category, and so on. The

metadata file is usually in the same archive with firmware. Sec-

ond, we adopt binwalk to scan all firmware images to obtain their

operating systems, architectures, and filesystems.

Firmware Extraction and Disassembly. The third step is to

unpack and disassemble the firmware for further analysis.

•Firmware extraction. The contained objects in firmware have many

syntactical features, which are vital for further TPC detection. Be-

sides, the linked libraries extracted from firmware are the main

sources for creating the TPC database. Therefore, it is necessary to

conduct firmware extraction before we perform further analysis.

Nevertheless, existing tools more or less have issues, e.g., incom-

plete extraction, when extracting the firmware which adopts the

latest or customized filesystems. The main challenge here is to ex-

tract the filesystems in firmware thoroughly without recursively

extracting compressed data. To address this challenge, we equip bin-

walk with a series of plugins. First, we analyze the filesystems used

in the collected firmware and find the original binwalk mainly has

issues on dealing with three popular systems: SquashFS, JFFS2, and

YAFFS. Then, we utilize sasquatch [1] and jefferson [11] to replace

the unsquashfs and jffsdump in binwalk. These two plugins support
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many vendor-specific SquashFS and JFFS2 implementations. Finally,

we implement a new plugin based on yaffshiv [2] for binwalk to

unpack YAFFS, which supports the brute-forcing of YAFFS build

parameters, e.g., page size, and extracting the contained objects

even after the filesystem has run many rounds.

•Firmware disassembly. The control-flow graph (CFG) in firmware

contains the essential information to identify the TPCs in firmware.

To obtain the CFGs, we need to disassemble the firmware first. How-

ever, existing disassemblers are unable to handle the monolithic

firmware without extra configuration. For instance, both native

IDA and GHIDRA [16] cannot deal with many monolithic firmware

images since they adopt uncommon processors and discard some

necessary information, e.g., the RAM/ROM start address, required

for analysis. The main challenge here is to recover the missing infor-

mation based on the known limited information of the monolithic

firmware. To solve this challenge, we first analyze the processors

used in monolithic firmware to recover the missing information and

then implement a series of customized plugins for IDA to load and

disassemble the monolithic firmware. More specifically, first, we

analyze the processor types, e.g., ESP8266 [47], used in the collected

monolithic firmware. Second, we collect the corresponding refer-

ence manual or datasheet for each processor. The reference manual

and datasheet can provide us three kinds of useful information:

the core, memory map, and interrupt vector table of the proces-

sor. We can figure out the exact instruction sets to disassemble the

firmware according to the core, and retrieve the RAM/ROM start

address used for loading firmware from the memory map. More-

over, we can obtain the firmware start address from the interrupt

vector table. Finally, we implement 7 plugins, which correspond to

7 kinds of processors used in monolithic firmware, for IDA based

on the recovered information. The plugins enable IDA to load and

disassemble the monolithic firmware automatically.

2.3 Firmware Analysis

It is a common practice to use the versions check [18, 56, 57] to

identify the corresponding vulnerabilities of TPCs. In FirmSec, we

also adopt this strategy to analyze firmware. The firmware analysis

module includes three submodules: 1) TPC database construction, 2)

TPC detection, and 3) vulnerability identification.

TPC Database Construction. Our analysis strategy requires a

TPC database that contains the possible TPCs used in firmware and

the detailed vulnerability information for each TPC version. Never-

theless, unlike the Maven Repository [12] that indicates the TPCs

used in Android apps, there is no such a publicly accessible database

for IoT firmware. The main challenge here is to collect as many

TPCs as possible from reliable sources and map the vulnerabilities

to the TPC versions. To overcome this challenge, we first collect

the possible TPCs used in IoT firmware from four sources: 1) linked

libraries extracted from the firmware; 2) open-source IoT projects;

3) SDKs from multiple IoT platforms, e.g., AWS IoT; and 4) a short-

list of TPCs from TSmart. Second, we leverage the cve-search [7],

a professional CVE search tool, to query the TPCs from the CVE

database [5], and implement a script to query the NVD [13] and

CVE Detail [6] to collect the TPC CVEs. With these two methods,

we can get the CVEs that correspond to different versions of TPCs.

The constructed TPC database for IoT firmware has the following

Table 1: Block-level and Function-level Attributes.

Type Attribute Name FirmSec Gemini [54]

Block-level

String Constants ✓ ✓

Numeric Constants ✓ ✓

No. of Transfer Instructions ✓ ✓

No. of Calls ✓ ✓

No. of Instructions ✓ ✓

No. of Arithmetic Instructions ✓ ✓

No. of Offspring ✓ ✓

Betweenness ✓ ✓

Function-level

No. of Basic Blocks ✓ %

No. of Edges ✓ %

No. of Variables ✓ %

fields: TPCs, licenses, versions, CVEs, CVSS score [8], and CVE

description. We finally collect 1,191 TPCs.

TPC Detection. To precisely detect the TPCs used in firmware at

version-level is vital in our analysis since we will use the exact ver-

sion of the detected TPC to confirm its vulnerabilities. Nevertheless,

it is difficult to distinguish the same TPCs at version-level since

we can only obtain limited information from firmware, and the

code difference of different versions might be tiny. To address this

challenge, we implement a novel TPC detection method based on

two kinds of features: syntactical features and CFG features, which

are hardly changed between the source files and binaries. We first

extract the above two features from TPCs and firmware. Next, we

leverage the edit distance [10, 56], a widely used method to measure

the similarity between two strings, and ratio-based matching to

calculate the similarity of syntactical features and use customized

Gemini [54] to compare the CFG features. Based on the comparison

results, we finally confirm the usage of TPCs at version-level. The

workflow is as follows.

•TPC feature extraction. First, we implement a parser to extract

the syntactical features from the C/C++ source files of TPCs. The

syntactical features include the string literals (e.g., unique string),

function information (e.g., function names and function parameter

types). For each kind of TPC, we summarize the common syntactical

features in its all versions, which are regarded as sharing syntac-

tical features. We then identify the specific syntactical features in

each version of the TPC, which are regarded as unique syntactical

features. Second, we extract the attributed control-flow graphs

(ACFGs) [34, 54] from each version of TPCs. Each vertex in an

ACFG is a basic block labeled with a set of attributes. Except for

the block-level attributes used in Gemini [54], we also use three

function-level attributes, as shown in Table 1. The function-level

attributes provide more detailed information on the structure of

CFGs, which are ignored by Gemini.

•Firmware feature extraction. First, we extract the same types of

syntactical features as the previous step from firmware. Though we

successfully disassemble the Linux-based firmware and monolithic

firmware, many function names are unrecognized by IDA, especially

in monolithic firmware. To address this problem, we equip IDAwith

a large number of signature files of TPCs to identify the function

names in disassembled files. The signature files are mainly collected

from the Internet, e.g., GitHub projects, and we also manually
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generate a part of signature files. Second, we extract the ACFGs

from the disassembled firmware with the same attributes as those

extracted from TPCs. However, the original extraction tool used by

Gemini cannot extract the ACFGs frommonolithic firmware since it

cannot disassemble monolithic firmware. Therefore, we customize

the extraction tool by integrating our firmware disassembly module.

•Syntactical feature matching. In this step, we conduct syntactical

feature matching to identify the TPCs. Unfortunately, the direct

features matching, e.g., regex, will cause low precision and recall.

Design a new matching method with high precision and recall is

the main challenge in this step. To address this challenge, we utilize

the edit distance and ratio-based matching to measure the similarity

between the TPC and firmware. We use 𝐷 (𝑆𝑇𝑃𝐶 , 𝑆𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒 ) to rep-

resent the edit distance between the syntactical features from TPCs

and firmware. If 𝐷 (𝑆𝑇𝑃𝐶 , 𝑆𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒 ) exceeds the given threshold

𝛼 , we regard the features are matched. We then calculate the dis-

tance of each extracted syntactical feature and record the number of

matched features. Next, we calculate the ratio of matched features

to all features extracted from the TPC, which can be represented as
𝑆𝑇𝑃𝐶∩𝑆𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒

𝑆𝑇𝑃𝐶
. If 𝑆𝑇𝑃𝐶∩𝑆𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒

𝑆𝑇𝑃𝐶
exceeds the given threshold 𝛽 ,

we regard the TPC is matched. Given some firmware may adopt the

partially built TPCs, the ratio-basedmatching can improve the preci-

sion under these circumstances. According to the evaluation results

in Section 3, we finally set the threshold of 𝐷 (𝑆𝑇𝑃𝐶 , 𝑆𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒 )

as 0.74 and the threshold of 𝑆𝑇𝑃𝐶∩𝑆𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒

𝑆𝑇𝑃𝐶
as 0.52. Based on the

above matching strategy, we then leverage the sharing syntactical

features for TPC-level identification and use the unique syntacti-

cal features for version-level identification. We mark the matched

results by syntactical features as 𝑅𝑆𝑦𝑛𝑡𝑎𝑥 .

•CFG feature matching. In this step, we leverage the customized

Gemini [54] to conduct the CFG feature matching. The original

Gemini is designed to detect specific vulnerabilities, e.g., OpenSSL

Heartbleed vulnerability, in firmware. It first extracts CFGs from

the vulnerability and firmware respectively. Then, Gemini converts

all CFGs to ACFGs, which are noted as 𝑉𝑢𝑙𝐴𝐶𝐹𝐺 and 𝐹𝑖𝑟𝑚𝐴𝐶𝐹𝐺 .

The ACFG is represented as an eight-dimensional vector, which

consists of eight block-level attributes as shown in Table 1. Next, it

utilizes an embedding network, which is based on struct2vec [26], to

calculate the cosine similarity between these ACFGs, which is noted

as 𝐶𝑜𝑠𝑖𝑛𝑒 (𝑉𝑢𝑙𝐴𝐶𝐹𝐺 , 𝐹𝑖𝑟𝑚𝐴𝐶𝐹𝐺 ). Finally, it lists the top-K similar

functions in firmware according to 𝐶𝑜𝑠𝑖𝑛𝑒 (𝑉𝑢𝑙𝐴𝐶𝐹𝐺 , 𝐹𝑖𝑟𝑚𝐴𝐶𝐹𝐺 ).
Nevertheless, the original Gemini cannot directly apply to TPC

detection. In our task, wewant to confirm the similarity between the
TPC and firmware rather than the similarity of individual functions.
Given each TPC has many ACFGs, the similarity of a single ACFG
cannot determine the similarity between the TPC and firmware.
The main challenge here is to design a method to aggregate the
similarity of each ACFG in the TPC to represent the final similar-
ity between the TPC and firmware. To address this challenge, we
normalize and aggregate the similarity of each ACFG based on the
weight of the corresponding CFG. We consider that if the CFG is
more complicated, its internal logic will also be more complicated.
Therefore, the high-complexity CFGs in the TPC are more likely
to have a larger difference from the CFGs in other TPCs than low-
complexity CFGs, which are more suitable as features to identify
TPCs. Based on the above analysis, we give a high weight to the
complex CFGs. We use cyclomatic complexity (CC) [9] to evaluate

the complexity of a CFG. CC is calculated as follows:

𝐶𝐶 = 𝑒 − 𝑏 + 2 (1)

where 𝑒 is the number of edges in the CFG, and b is the number
of basic blocks in the CFG. Next, we calculate the ratio of the
complexity of each CFG to the complexity of all CFGs in the TPC
as the weight of each CFG, which is defined as follows:

𝑊𝑒𝑖𝑔ℎ𝑡 (𝐶𝐹𝐺) =
𝐶𝐶 (𝐶𝐹𝐺)

∑
𝑁

𝑖=0
𝐶𝐶 (𝐶𝐹𝐺𝑖 )

(2)

where 𝑁 is the number of CFGs in the TPC. Finally, we aggregate
the similarity of each ACFG to represent the similarity of the TPC
and firmware, which is denoted as follows:

𝑆𝑖𝑚 (𝑇𝑃𝐶, 𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒) =

𝑁∑︁

𝑖=0

𝑆𝑖𝑚 (𝐴𝐶𝐹𝐺𝑖 ) ∗𝑊𝑒𝑖𝑔ℎ𝑡 (𝐶𝐹𝐺𝑖 ) (3)

where 𝑆𝑖𝑚(𝐴𝐶𝐹𝐺𝑖 ) is the similarity between each ACFG in the

TPC and the most similar function in firmware. With the above

strategy, we successfully apply the customized Gemini to our task.

We regard the TPC as matched if 𝑆𝑖𝑚(𝑇𝑃𝐶, 𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒) exceeds the

threshold 𝛾 . We train the customized Gemini on Dataset I and then

set threshold as 0.64, which are described in Section 3. We mark

the matched results by CFG features as 𝑅𝐶𝐹𝐺 .

We finally take the union of 𝑅𝑆𝑦𝑛𝑡𝑎𝑥 and 𝑅𝐶𝐹𝐺 as our final re-

sults, which can be represented as 𝑅𝑆𝑦𝑛𝑡𝑎𝑥∪𝑅𝐶𝐹𝐺 . For instance, the

identification result of sample.bin in 𝑅𝑆𝑦𝑛𝑡𝑎𝑥 is: OpenSSL unknown,

uClibc 0.9.32.1, and in 𝑅𝐶𝐹𝐺 is: OpenSSL 0.9.8, uClibc 0.9.32.1. Then,

𝑅𝑆𝑦𝑛𝑡𝑎𝑥 ∪ 𝑅𝐶𝐹𝐺 should be OpenSSL 0.9.8, uClibc 0.9.32.1.

Vulnerability Identification. In this step, we leverage versions

check to identify the vulnerabilities of the detected TPCs in firmware

based on our TPC database. The database includes the CVEs that

correspond to different versions of TPCs. Therefore, we implement

a script to automatically query the database with the TPCs and

the corresponding versions (e.g., OpenSSL 0.9.8), and record the

returned vulnerability information. We need to clarify that some

vulnerabilities may cannot be exploited since it is possible that some

of the vulnerable code cannot be reached due to other remedies,

such as disabling certain configuration options or performing some

checks to prevent its use. Therefore, we regard identified vulnera-

bilities as potential vulnerabilities. We finally generate a report for

the tested firmware, which indicates its potential risks and provides

a series of suggestions for fixing the vulnerabilities.

3 SYSTEM EVALUATION

In this section, we first introduce the composition of our dataset.

Next, we evaluate the performance of FirmSec, and compare it with

three state-of-the-art works: Gemini [54], BAT [37], OSSPolice [30].

3.1 Dataset Composition

Based on the firmware collection module, we initially collect a total

of 35, 978 firmware images varying from 13 vendors which involve

35 kinds of devices. More specifically, 12, 913 firmware images are

crawled from the Internet and 23, 065 firmware images are obtained

from TSmart. Our dataset actually involves hundreds of vendors

since the private firmware images from TSmart are manufactured

by hundreds of vendors. TSmart provides a platform that can en-

able the devices from various vendors to become smart products.

We use TSmart as the vendor of private firmware for convenience.
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Table 2: Dataset Composition.

Vendor Category
# Download

Firmware

# Valid

Firmware
SquashFS CramFS JFFS2

Unknown

Filesystems
ARM MIPS X86

Unknown

ARCH
Linux-based Non-Linux based

Xiongmai Camera 1,038 520 - 45 - 475 326 - - 194 520 -

Tomato-shibby Router 642 230 230 - - - 168 - - 62 230 -

Phicomm Router 107 107 73 - - 34 30 25 - 52 107 -

Fastcom
Router 200 149 13 - - 136 53 34 - 62 149 -

Unknown 10 10 6 - - 4 - 4 - 6 10 -

Trendnet

Camera 492 477 8 44 - 425 274 100 103 477 -

Router 463 336 261 - - 75 119 91 - 126 336 -

Switch 162 162 93 - 18 51 116 17 - 29 162 -

Unknown 168 106 12 18 4 72 81 2 - 23 106 -

Xiaomi Router 21 21 21 - - - 8 9 - 4 21 -

TP-Link

Camera 384 319 242 - 35 - 170 145 - 4 319 -

Router 996 820 709 - 19 92 143 638 - 39 820 -

Switch 270 270 22 - - 248 110 43 - 117 270 -

Unknown 48 48 20 - 1 27 19 16 - 13 48 -

D-Link

Camera 360 360 17 11 - 332 192 106 - 62 360 -

Router 555 552 401 - 2 149 268 109 6 169 552 -

Switch 695 545 198 - - 347 312 18 8 207 545 -

Unknown 91 91 4 8 5 74 25 7 1 58 91 -

Hikvision Camera 158 139 - 47 1 91 131 - - 8 139 -

Foscam Camera 113 113 - - - 113 53 - - 60 113 -

Dahua Camera 419 419 9 19 - 341 260 2 1 156 419 -

TSmart

Camera 326 326 88 123 43 72 191 45 - 90 296 30

Smart Switch 2,053 2,053 1 - - 2,052 267 2 - 1,784 29 2,024

Sweeper 33 33 - - - 33 10 2 - 21 25 8

Light 8,089 8,089 - - 1 8,088 617 - - 7,472 12 8,077

General 871 856 2 9 44 801 212 2 - 642 776 80

Plugin 8,294 8,294 - - - 8,294 478 - - 7,816 14 8,280

Heater 361 361 - - - 361 - - - 361 - 361

Blueteeth Light 1,000 1,000 - - - 1,000 637 - - 363 - 1,000

Air 517 517 - - - 517 96 - - 421 - 517

Curtain 195 195 - - - 195 8 - - 187 - 195

Lock 68 68 - - - 68 - - - 68 - 68

Freezer 44 44 - - 4 40 4 - - 40 4 40

Air Purifier 24 24 - - - 24 - - - 24 - 24

Humidifier 12 12 - - - 12 - - - 12 - 12

Dehumidifier 57 57 - - - 57 - - - 57 - 57

Heat Controller 49 49 - - - 49 - - - 49 - 49

Fan 14 14 - - - 14 - - - 14 - 14

Washer 4 4 - - - 4 4 - - - - 4

Gateway 60 60 3 - - 57 14 14 - 32 3 57

Others 994 994 42 21 22 909 337 6 - 651 97 897

OpenWrt Router 5,585 5,292 3,903 - 41 1,348 2,415 194 10 2,673 5,292 -

We list the detailed composition of our dataset as shown in Ta-

ble 2. After data filtration, we get rid of 1, 842 non-firmware files

and finally obtain 34, 136 valid firmware images across 13 vendors

including 11, 086 publicly accessible firmware images and 23, 050

private firmware images from TSmart. Our dataset includes 35 kinds

of known IoT devices and a part of unknown IoT devices. 2, 694

(7.9%) firmware images are used in camera, 7, 293 (21.3%) firmware

images belong to router, 1, 191 (3.5%) firmware images are deployed

on switch, 23, 050 (67.5%) firmware images from TSmart have been

equipped on smart homes, and 255 (0.7%) are unknown. Apart from

the vendors and devices mentioned above, our dataset also covers

several instruction sets, of which ARM (23.9%) takes the majority

and MIPS follows (4.9%). SquashFS, CramFS, and JFFS2 are three

popular filesystems included in the dataset. Most of the unknown

filesystems actually belong to the above three filesystems based

on our further analysis. Vendors customize the above filesystems

in firmware, which also changes the magic number of the orig-

inal filesystems used for identification. Moreover, 12,342 (36.2%)

firmware images are Linux-based and 21,794 (63.8%) firmware im-

ages are non-Linux based.

3.2 Evaluation

Ground-truthDataset Construction.Wefirst build three ground-

truth datasets: (1) Dataset I for training the customized Gemini and

evaluating the accuracy of the model; (2) Dataset II for choosing

the appropriate thresholds used in FirmSec; (3) Dataset III for eval-

uating the accuracy of FirmSec in detecting the TPCs at TPC-level

and version-level in firmware. Dataset I includes the ACFGs we

extracted from 1,192 TPCs in our TPC database. To be consistent

with the settings of Gemini, we compile each TPC into 12 different

versions, including three different platforms (MIPS, X86, ARM) and

four different optimization levels (O0-O3). Dataset II and Dataset

III have a labeled mapping of firmware to TPCs usage for ground

truth. To the best of our knowledge, there are no such datasets

available from previous works. Given it is difficult to know the

specific TPCs used in commercial firmware, we finally use Tomato-

shibby and OpenWrt firmware images to build our datasets since
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Table 3: Comparison of FirmSec, Gemini, BAT, and OSSPolice.

Tools
TPC-level Version-level

Precision Recall Precision Recall

FirmSec 92.09% 95.24% 91.03% 92.26%

Syntax-based 92.38% 86.29% 91.47% 81.66%

CFG-based 93.72% 82.76% 94.65% 80.90%

Gemini [54] 89.60% 74.19% 90.78% 71.73%

BAT [37] 70.74% 56.38% NA NA

OSSPolice [30] 86.63% 71.85% 82.51% 67.05%

they have source code and clearly indicate the adopted TPCs with

exact versions in the configuration files. For Dataset II, we ran-

domly collect 200 Tomato-shibby firmware images from our dataset,

which include 17, 918 TPC-version pairs (73 different TPCs with

211 different versions). For Dataset III, we randomly select 300

OpenWrt firmware images from our dataset, which include 19, 645

TPC-version pairs (92 different TPCs with 194 different versions).

We use the two datasets to perform the threshold selection and

evaluation respectively to avoid bias.

Model Accuracy.We split Dataset I into three subsets for training,

validation, and testing respectively according to the ratio of 6:2:2.

We train the customizedGemini for 100 epochs based on the original

Gemini’s training process. The model that achieves the best AUC

(Area Under the Curve) on the validation set during the 100 epochs

is saved. We finally test the model on the testing set and the AUC

is 0.953. We also retrain the original Gemini with the same process,

which AUC is only 0.912.

Threshold Selection. Our final results are the union of the re-

sults that matched by syntactical features and CFG features. We

do not directly use the thresholds when the respective method

achieves the optimal performance since the union results may not

reach the best at this time. We take three thresholds as a whole

and utilize the true positive rate (TPR) at version-level as the met-

ric to select the appropriate thresholds. We combine the three

thresholds and their corresponding TPR as a four-dimensional vec-

tor: [𝛼 , 𝛽 , 𝛾 , TPR]. Each threshold ranges from 0.01 to 1.00. We

select the thresholds when the TPR reaches the highest. Based

on our experiment, FirmSec achieves the highest TPR (91.47%)

when the thresholds of 𝐷 (𝑆𝑇𝑃𝐶 , 𝑆𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒 ),
𝑆𝑇𝑃𝐶∩𝑆𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒

𝑆𝑇𝑃𝐶
, and

𝑆𝑖𝑚(𝐴𝐶𝐹𝐺𝑇𝑃𝐶 , 𝐴𝐶𝐹𝐺𝐹𝑖𝑟𝑚𝑤𝑎𝑟𝑒 ) are 0.74, 0.52, and 0.64, respec-

tively. We leverage the above thresholds for the following eval-

uation and analysis.

Evaluation Results. We evaluate the detection accuracy of Firm-

Sec on Dataset III at TPC-level and version-level with two eval-

uation metrics: precision ( 𝑇𝑃
𝑇𝑃+𝐹𝑃 ) and recall ( 𝑇𝑃

𝑇𝑃+𝐹𝑁 ). The false

positives represent the TPCs and versions that we wrongly identi-

fied, and the false negatives represent the TPCs and versions that we

do not find. Though we have constructed the ground-truth dataset,

we still manually check the true positives, false positives, and false

negatives to verify the precision and recall. Because we consider

there may exist some corner cases that will influence our results. As

shown in Table 3, FirmSec achieves 92.09% precision, 95.24% recall

at TPC-level, and 91.03% precision, 92.26% recall at version-level.

We also list the syntax-based matching results and the CFG-based

matching results when the TPR of each method reaches the highest.

We find that the precision of the union results is very close to the

respective methods, but the recall rate is much higher. We explore

the reasons that why the union results have a great performance

than the separate methods. First, the true positives of the two meth-

ods have non-overlapping parts, thus reducing the union results’

false negatives. For instance, the syntax-based method is hard to

detect the TPCs which have limited syntactical features (e.g., with-

out unique string literals), but they can be identified through CFG

features. Second, their false positives have overlapping parts, which

will not greatly increase the false positives of the union results. We

further analyze the false positives and false negatives. First, the false

positives are mainly caused by two reasons: 1) TPCs overlapping.

Several TPCs reuse the code of other TPCs with minor changes.

Under these circumstances, FirmSec will report all matched TPCs.

2) High similarity between different versions. Some versions of the

same TPC have little difference or even no difference in their code.

Second, the false negatives are due to two reasons: 1) Uncommon

TPCs used in firmware. FirmSec cannot detect the TPCs that are not

included in our database. 2) Insufficient features. Some firmware

only use partially built TPCs which have limited features that can

be used for identification.

Comparison Results.We compare FirmSecwith three state of the

arts: Gemini [54], BAT [37] and OSSPolice [30]. The original Gemini

uses 8 block-level attributes to conduct code similarity compari-

son. We enhance it with our CFG weight-based method to detect

the TPCs in firmware. BAT leverages string literals to identify the

TPCs in binaries, but cannot detect the exact versions. OSSPolice

is originally designed to detect the open-source software usage at

version-level in Android apps. Given it supports finding TPCs in

C/C++ native libraries, we successfully apply it on IoT firmware

and compare it with FirmSec. Before we conduct comparison, we

generate the corresponding TPC database for BAT and OSSPolice

based on their instructions respectively. Table 3 presents the com-

parison results of FirmSec with Gemini, BAT, and OSSPolice. We

do not report the results of BAT at version-level since it does not

support version-level identification. For TPC-level identification,

FirmSec is far better than other tools. FirmSec reports more TPCs

at a higher precision and recall rate. For version-level identification,

FirmSec outperforms Gemini and OSSPolice on both metrics. We

further explore the reasons that why FirmSec is better than other

tools. First, Gemini ignores the function-level attributes which offer

much useful information on the structure of CFGs. Second, BAT

mainly utilizes string literals to identify the TPCs. It uses the direct

feature matching to compare the string literals extracted from TPCs

and firmware, which causes a low precision and recall rate. Finally,

OSSPolice utilizes a hierarchical matching strategy, which relies on

the package structures of TPCs, to identify TPCs. Nevertheless, the

package structures of the same TPC in different versions can be

easily changed. Besides, its feature extraction tool does not perform

well on IoT firmware since it is not optimized for firmware.

4 DATA CHARACTERIZATION

4.1 TPC Usage

In this subsection, we deploy FirmSec on the dataset to first iden-

tify the TPCs used in firmware. FirmSec successfully unpacks and
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Figure 2: Top 10 TPCs Used in Each Kind of Firmware.

Table 4: Analysis Results of Our Dataset. # 𝑇𝑃𝐶 and # 𝑉𝑢𝑙 .

represent the average number of TPCs and vulnerabilities of

each firmware image respectively.

Vendor Category # Firmware # TPC # 𝑇𝑃𝐶 # Vul. # 𝑉𝑢𝑙 .

Xiongmai Camera 520 232 0.45 313 0.60

Tomato-shibby Router 230 2,088 9.08 11,948 51.95

Phicomm Router 107 405 3.79 1,818 16.99

Fastcom
Router 149 274 1.83 1,849 12.41

Unknown 10 0 0 0 0

Trendnet

Camera 477 136 0.28 1,395 4.32

Router 336 1,762 5.24 7,903 23.52

Switch 162 366 2.26 3,157 19.49

Unknown 106 164 1.54 158 1.52

Xiaomi Router 21 251 11.95 2,440 116.19

TP-Link

Camera 319 1,981 6.21 27,001 84.64

Router 606 4,222 6.97 30,612 50.51

Switch 484 77 0.16 795 1.64

Unknown 48 67 1.40 639 13.31

D-Link

Camera 360 113 0.31 737 2.04

Router 552 2,823 5.11 14,495 26.26

Switch 545 80 0.15 1062 1.95

Unknown 91 30 0.33 266 2.92

Hikvision Camera 139 8 0.06 127 0.91

Foscam Camera 113 0 0 0 0

Dahua Camera 419 43 0.10 430 1.03

TSmart Smart Homes 23,050 856 0.04 4,353 0.19

OpenWrt Router 5,292 300,020 56.69 13,486 2.55

disassembles 96% firmware images in the whole dataset. We sum-

marize the reasons why the remaining 4% firmware images cannot

be analyzed: 1) 123 firmware images are encrypted; 2) 972 firmware

images from TSmart have unknown processors; thus, we fail to im-

plement plugins for IDA to process them; and 3) We do not support

the unknown filesystems used in 269 Linux-based firmware images.

We have excluded the remaining 4% firmware images in further

analysis in Section 5.

As shown in Table 4, FirmSec identifies 584 different TPCs used

in 34, 136 firmware images. Since there are lots of identified TPCs,

we decide to present the results of top 10 TPCs used in each kind

of firmware, as shown in Figure 2. Based on the results, we have

the following findings. (1) Routers from OpenWrt contain the most

TPCs, reaching an average of 56.69 per firmware image. It is rea-

sonable that OpenWrt utilizes many TPCs since OpenWrt is an

open-source project for embedded systems. (2) Smart homes from

TSmart contain fewer TPCs which have 0.04 TPCs per firmware

image. Most of the smart homes leverage the monolithic firmware.

Table 5: Top 10 CWE Software Weaknesses.

CWE ID Weakness # CVEs
1. 399 Resource Management Error 87
2. 119 Buffer Overflow 84
3. 310 Cryptographic Issues 47
4. 20 Improper Input Validation 39
5. 264 Access Control Error 36
6. 200 Information Disclosure 31
7. 189 Numeric Errors 20
8. - Insufficient Information 18
9. 94 Code Injection 8
10. 362 Race Condition 7

According to our further analysis, we find the monolithic firmware

used in smart homes usually adopts their own implementations

to replace the TPCs. Besides, some monolithic firmware is com-

posed of a piece of code and data that achieves simple logistic

functions. (3) 10 unknown firmware images from Fastcom and 113

cameras from Foscam are encrypted. For these encrypted firmware

images, FirmSec cannot obtain useful information to identify the

TPCs used in them. Currently, there is no effective method that

can analyze the encrypted firmware automatically. (4) The same

kind of firmware from different vendors adopts similar TPCs. For

instance, all routers adopt BusyBox, OpenSSL, Dnsmasq, MiniUPnP,

uClibc, L2tpd and Util-linux in their firmware. (5) Different kinds

of firmware have commonalities in adopting TPCs. For instance,

BusyBox, Lua, OpenSSL are all in the top 10 TPCs usage list of each

kind of firmware. In addition, we have a counterintuitive finding.

We find that only <1% firmware images are using MbedTLS, which

is a popular lightweight TPC designed to replace OpenSSL in embed-

ded systems. We propose two possible reasons why more firmware

images are using OpenSSL rather than MbedTLS. (1) OpenSSL has

more features compared to MbedTLS. When computing power is

allowed, there are more reasons for developers to utilize OpenSSL.

(2) Though MbedTLS is used in many popular IoT frameworks, e.g.,

FreeRTOS, many vendors have their own frameworks to develop

the firmware which do not use MbedTLS.

4.2 Introduced Vulnerabilities Overview

After we obtain the TPCs used in firmware, we then search the cor-

responding vulnerabilities in our vulnerability database. As shown

in Table 4, we detect a total of 128, 757 potential vulnerabilities,

which involve 429 CVEs, in 34, 136 firmware images. In this paper,
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(c) Number of Vulnerabilities Caused by Top 10 TPCs.

Figure 3: Number of Affected Firmware Images, CVEs and Vulnerabilities Caused by the Top 10 TPCs.

we count each CVE found in a firmware image as a separate vul-

nerability. Table 5 lists the top 10 CWE software weaknesses by the

number of CVEs, accounting for 88% of all the CVEs we detected.

The results indicate that the vulnerabilities in firmware involve a

wide variety of security issues. Based on the results, we find IoT

devices are suffering from substantial security risks since most of

them contain a significant number of vulnerabilities. The routers

from Xiaomi are in a very critical situation with 116.19 mean vul-

nerabilities, the most of all vendors. Moreover, routers produced by

other vendors also have a great number of vulnerabilities. TP-Link,

D-Link and Trendnet are well-known IoT vendors and all have mul-

tiple kinds of IoT devices. However, their products all have lots of

vulnerabilities. The cameras from Xiongmai, Hikvision and Dahua

all have nearly one vulnerability per firmware image. What’s more,

though OpenWrt contains the highest average number of TPCs

per firmware image, we find comparatively few vulnerabilities in

it, which has an average of 2.55 vulnerabilities for each firmware

image. Next, FirmSec detects a comparative few vulnerabilities

from TSmart’s firmware in consideration of its largest scale. TS-

mart has the best performance among the involved vendors, which

only contains 0.19 vulnerabilities per firmware image.

Besides, though we detect a large number of TPCs, most of

the vulnerabilities are concentrated on a few TPCs. As shown in

Figure 3, we list the top 10 TPCs from three aspects: the number

of affected firmware images, the number of caused CVEs and the

number of caused vulnerabilities. OpenSSL contains the most CVEs,

totaling 132, that affects 1, 304 firmware images and causes 52, 135

vulnerabilities totally. Busybox is the most widely used TPC that

has been identified in 3, 326 firmware images. We detect 12 CVEs

of Busybox that cause 12, 072 vulnerabilities, which reaches an

average of 1, 006 vulnerabilities per CVE. Though IPTables has been

identified in a great number of firmware images, it just causes a

few vulnerabilities. Moreover, as shown in Figure 3(b), we have

identified a total of 386 CVEs from these 10 TPCs, accounting for

90% of all the CVEs we detected.

5 ANALYSIS RESULTS

In this section, we aim to answer the following research questions.

• RQ1: How vulnerable are firmware images of different kinds and

from different vendors?

• RQ2: What is the geographical distribution of the devices using

vulnerable firmware?

Table 6: Vulnerability of Different Kinds of Firmware.

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ,𝐻𝑖𝑔ℎ,𝑀𝑒𝑑𝑖𝑢𝑚 and 𝐿𝑜𝑤 represent the average number

of critical, high, medium and low vulnerabilities.

Category 𝑉𝑢𝑙 . 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐻𝑖𝑔ℎ 𝑀𝑒𝑑𝑖𝑢𝑚 𝐿𝑜𝑤

Router 22.92 1.48 2.73 17.59 1.12

Camera 9.81 0.32 1.92 7.20 0.37

Switch 5.29 0.22 0.62 3.98 0.47

Smart Homes 0.19 0.01 0.05 0.11 0.02

Table 7: Vulnerability of Firmware From Different Vendors.

Vendor 𝑉𝑢𝑙 . 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐻𝑖𝑔ℎ 𝑀𝑒𝑑𝑖𝑢𝑚 𝐿𝑜𝑤

Xiaomi 116.19 2.86 18.52 78.43 10.67

Tomato-shibby 51.95 2.77 8.46 35.49 1.84

TP-Link 39.20 1.37 6.97 28.59 2.26

Phicomm 16.99 0.41 3.88 11.28 0.54

D-link 11.87 0.55 1.95 8.03 1.34

Trendnet 11.02 0.29 1.85 7.98 0.90

Fastcom 9.13 0.44 1.35 6.81 0.53

OpenWrt 2.55 0.00 0.46 1.58 0.00

Dahua 1.03 0.03 0.14 0.66 0.16

Hikvision 0.91 0.05 0.17 0.60 0.03

Xiongmai 0.60 0.00 0.21 0.32 0.07

TSmart 0.19 0.01 0.05 0.11 0.02

• RQ3: Does the firmware adopt the latest TPCs at the time when

it was released?

• RQ4: Are there any TPC license violations?

5.1 Firmware Vulnerability

This subsection answers RQ1. Though we have identified many

vulnerabilities in firmware, we still lack an understanding of how

vulnerable are firmware images of different kinds and from differ-

ent vendors. To answer this question, we evaluate the security of

firmware based on the average number of vulnerabilities of different

severity in firmware. We also discover some critical vulnerabilities

still threaten the security of firmware.

First, we explore the vulnerability of different kinds of firmware.

As shown in Table 6, we list the average number of different severity

vulnerabilities in each kind of firmware. Since the number of routers
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Table 8: The Firmware Affected by Two Vulnerabilities.

Vendors
Heartbleed

(CVE-2014-0160)

GHOST

(CVE-2015-0235)

Fastcom 2 1

Trendnet 36 87

Tomato-shibby 24 -

TP-Link 301 91

D-Link 3 45

Hikvision 1 -

Dahua 5 -

TSmart 8 -

from OpenWrt is much higher than other vendors, which may bring

bias to our results, we finally randomly select 500 OpenWrt routers

for analysis. We notice that the router is more vulnerable to attacks

than the other three kinds of firmware since it has the most vulner-

abilities of different severity. The router is also the only category

that has more than one critical vulnerability per firmware image on

average. The camera and switch have a similar number of critical

vulnerabilities and low vulnerabilities per firmware image, while the

camera has more high vulnerabilities and medium vulnerabilities

than the switch. Smart home is the least vulnerable category since

it has few vulnerabilities of different severity. Second, we study

the vulnerability of firmware from different vendors. As shown

in Table 7, Xiaomi has the most vulnerabilities of different sever-

ity, which causes Xiaomi more vulnerable to attacks. Both Xiaomi

and Tomato-shibby have nearly three critical vulnerabilities per

firmware image on average, which is significantly higher than the

other vendors. The vulnerabilities detected in TP-Link, Phicomm,

D-Link, Trendnet, and Fastcom are mainly at the medium severity

level. OpenWrt, Dahua, Hikvision, Xiongmai, and TSmart have very

few vulnerabilities per firmware image. Besides, both OpenWrt and

Xiongmai have no critical vulnerability in each firmware image.

During the above analysis, we surprisingly find that some critical

vulnerabilities are still having severe impact on the firmware in our

dataset. We take two representative critical vulnerabilities: OpenSSL

Heartbleed and glibc GHOST for instance. We find these two vulner-

abilities have affected 604 firmware images which account for 1.8%

of the dataset, as shown in Table 8. More specifically, 380 firmware

images from 8 vendors are vulnerable to the Heartbleed, and 224

firmware images from 4 vendors contain the GHOST.

5.2 Geographical Distribution

This subsection answers RQ2. We regard that geographical distri-

bution of vulnerable devices can reflect the potential imbalance

between regions in terms of IoT devices’ threat level. To answer

this question, first, we map firmware to its exact device model,

which is necessary for searching IoT devices in the IoT search en-

gine. We successfully find the corresponding device models with

exact firmware versions for 1, 247 firmware images. For instance,

we confirm the firmware DIR827A1_FW103.bin is actually used in

D-Link Amplifi HD Media Router 2000 (DIR-827), whose firmware

version is 1.0.3. Second, we utilize Shodan [15] to find the distri-

bution of these possible vulnerable IoT devices, and choose the
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Figure 5: Delay Time of TPCs.

devices whose version is the same as the vulnerable firmware. For

example, we use DIR-827 as the keyword to search the DIR-827

routers. Then, we select the routers whose version is 1.0.3 that is

shown in their banner. Based on the search results, we list the top

10 regions with the most deployed vulnerable IoT devices, as shown

in Figure 4. There are six regions: South Korea, Taiwan, Singapore,

China, Hongkong, and the United Arab Emirates, located in Asia.

South Korea contains the most vulnerable IoT devices all over the

world, which reaches 20,191. The two countries in North America

- the United States and Canada both have a large number of vul-

nerable IoT devices. Europe contains relatively few vulnerable IoT

devices.

We propose three possible reasons for the difference in the dis-

tribution of vulnerable devices. (1) The number of devices sold by

vendors varies from region to region. (2) The security of the de-

vices on factory mode is different in different regions. The same

devices sold in some regions may have already been equipped with

the updated firmware on factory mode. (3) Vendors have different

firmware update mechanisms in different regions. Some regions

may get firmware updates preferentially.

5.3 Delay Time of TPCs

This subsection answers question RQ3. Most of the firmware vul-

nerabilities caused by TPCs are due to that firmware is still utilizing

outdated TPCs. However, the latest TPCs may not be suitable for
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firmware, since they may lower the performance and influence the

stability. Vendors may ignore the vulnerabilities and still use the old

version of TPCs. Considering this situation, we want to explore the

delay time of TPCs used in firmware. The delay time represents the

days from the release date of the TPC that the firmware was using

to the latest version of the TPC when the firmware was released.

We first obtain the release dates of TPCs based on their versions.

Then, we obtain the release dates of the corresponding firmware.

Based on this, we infer the latest versions of the TPCs used in

firmware at the time when the firmware was released. Finally, we

calculate the delay time by the difference between these two release

dates. Figure 5 shows the average delay time of the used TPCs for

each vendor. The TPCs used in Phicomm have the longest delay

time, which reaches 3457.2 days. In other words, Phicomm is still

using the TPCs that were released ten years ago. OpenWrt has the

shortest delay time, which is less than two years. It could be a reason

that OpenWrt has few vulnerabilities, as shown in Table 4. Xiaomi

also has a long delay time, nearly seven years. What’s more, we

also notice that Xiaomi contains the most number of vulnerabilities

per firmware image, which also confirms the relationship between

the delay time and the number of vulnerabilities. D-Link, TP-Link,

and Trendnet all have a couple of different kinds of IoT devices.

These vendors have a common phenomenon that the router has a

longer delay time than the camera. The average delay time of TPCs

for all involved firmware images is 1948.2 days, which shows that

the TPCs they used have fallen behind by five years. Our results

reveal the widespread usage of outdated TPCs in IoT firmware.

5.4 License Violations

This subsection answers questionRQ4. The use of TPCs in firmware

can lead to complex license compliance issues. For instance, Cisco

has involved in a lawsuit since it did not adhere to the license

requirements [45]. We mainly study the license violations caused

by two highly restrictive licenses: General Public License (GPL)

and Affero General Public License (AGPL), since they are widely

used licensing terms and have a basic requirement that developers

should provide the source code if they distribute the programs that

use the TPCs licensed under GPL/AGPL. According to our in-depth

study, we first discover 2, 478 commercial firmware images that

have potentially violated GPL/AGPL licensing terms, as shown

in Table 9. We then study the open-source policy of the involved

vendors. We notice that four vendors (TP-Link, D-Link, Trendnet,

and Hikvision) have provided distribution sites for downloading

the source code of firmware. Nevertheless, we find the source code

of some firmware, which utilizes the GPL/AGPL-licensed TPCs,

cannot be found on their sites. We further contact the involved

vendors, except for the TSmart, to request the source code for some

firmware but do not get any response yet.

We summarize three possible reasons why vendors do not open-

source the firmware according to license requirements. First, ven-

dors disregard the restrictions of licenses. Currently, there are no

strongmeasures to enforce the GPL/AGPL compliance since the law-

suit is complicated and may not apply to some countries. Second,

open-sourcing the firmware may lead to new attacks. Attackers can

find vulnerabilities through auditing the source code, which may

affect more firmware images if vendors reuse the vulnerable code in

other firmware. Third, the firmware has license conflicts. Vendors

Table 9: Potential License Violations.

Vendors # Firmware Source Code Available

Xiongmai 195 %

Phicomm 96 %

Fastcom 17 %
Trendnet 433 ✓

Xiaomi 20 %
TP-Link 847 ✓

D-Link 487 ✓

Hikvision 2 ✓

Dahua 11 %

TSmart 370 %

may have some commercial licenses that applied to the firmware

simultaneously, which conflicts with the open-source licenses.

6 DISCUSSION

Ethics. Our large-scale vulnerability analysis of IoT firmware may

raise serious ethical concerns. To avoid these potential hazards, we

pay special attention to legal and ethical issues. First, all firmware

images are collected and treated legally. For the publicly accessible

firmware, we collect it from legal sources, e.g., official websites, and

adhere to the Robots Exclusion Protocol (REP) [39]. For the private

firmware, we only use it for research purposes. Besides, responsible

disclosure is also a basic requirement for us. We have actively

contacted the related vendors and reported our results to them

as detailed as possible. Finally, we have a legal and ethical issues-

free plan to open-source our dataset. For the publicly accessible

firmware images, we will provide their official download links.

For the private firmware images, we have full authorization from

TSmart to open-source them after desensitizing.

Limitations and Future Work. In the future, we plan to improve

our work in three aspects. First, we will continue to collect more

firmware images to extend our dataset. Though we have collected

34, 136 firmware images, we still lack the firmware of some current

popular devices, e.g., smart assistant devices. Second, wewill contin-

ually enrich our TPC database. Currently, FirmSec can only detect

the TPCs included in the database. During our analysis, FirmSec

has some false positives at TPC-level identification since our data-

base does not record some uncommon TPCs used in IoT firmware.

Finally, we will adopt new techniques to conduct a more in-depth

analysis of IoT devices. FirmSec has an outstanding performance

in finding N-days vulnerabilities caused by TPCs. However, it is

hard to detect unknown vulnerabilities. We plan to combine fuzzing

techniques [41, 42] with FirmSec to find new vulnerabilities.

7 RELATED WORK

TPC Detection. Several works have been proposed to discover

the TPCs used in Android apps [18, 44, 56, 57]. However, these

works more or less require Android features support. Therefore, it

is difficult to apply them to IoT firmware analysis. Duan et al. [30]

proposed OSSPolice to detect the open-source software license vi-

olations and identify the open-source software at version-level in

Android apps. Though OSSPolice supports C/C++ native binaries,
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its feature extraction tool does not perform well on IoT firmware.

Besides, its hierarchical matching strategy heavily relies on the

correctness of the package structures of TPCs. Hemel et al. [37]

proposed BAT to detect the usage of TPCs in binaries based on

string literals. Nevertheless, the direct feature matching strategy

adopted by BAT will cause a low precision and recall rate.

Static Analysis. Costin et al. [23] conducted the first large-scale

analysis of firmware. However, they did not delve into the vul-

nerabilities introduced by TPCs in firmware. Other works uti-

lized more robust features from I/O behavior [46] and control flow

graphs [32, 34] of an image to discover vulnerabilities. Nevertheless,

these methods cannot be applied for large-scale firmware vulnera-

bility search since they only support firmware using a few kinds of

architectures and require a lot of manual work. Several works focus

on using similar code detection to find vulnerabilities in firmware.

Xu et al. [54] proposed a neural network-based approach to compare

the similarity of binary codes. David et al. [27] proposed FirmUp

to conduct a precise static detection of common vulnerabilities in

firmware via matching similar procedures in the context of exe-

cutables. Ding et al. [29] proposed Asm2Vec for assembly clone

detection based on learned representation. However, these works

are designed for comparing the similarity between the individual

functions rather than the similarity between the entire TPCs with

firmware.

Dynamic Analysis. Zaddach et al. [55] designedAvatar, a dynamic

analysis framework for firmware security analysis by forwarding

I/O access between the emulator and real device. Further, Muench

et al. [43] described how to orchestrate the execution among differ-

ent testing environments. Chen et. al [21] presented FIRMADYNE

to automatically analyze Linux-based firmware. Costin et al. [24]

performed the security analysis of web interfaces within embed-

ded devices leveraging several off-the-shell analysis tools. Feng et

al. [33] proposed 𝑃2𝐼𝑀 to perform fuzz-testing on firmware from

MCU devices in a fully emulated fashion. Nevertheless, it is hard to

apply them tn a large-scale analysis since they require real devices

or a lot of manual work to configure for each firmware image.

8 CONCLUSION

In this paper, we conduct the largest-scale analysis of the TPC issues

in IoT firmware at present. We propose FirmSec which dedicates

to finding the vulnerabilities in firmware caused by TPCs. Based

on FirmSec, we identify 584 TPCs and detect a total of 128, 757

security vulnerabilities caused by 429 CVEs in 34, 136 firmware

images. Our analysis reveals the widespread usage of vulnerable

and outdated TPCs in IoT firmware. Moreover, we present a global

view of the geographical difference in the security of IoT devices.

Further analysis discloses the GPL/AGPL license violations widely

exist in firmware. We believe our work will shed light on the further

study of the security of IoT devices.
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